Log in

Real-Time Prediction of Plastic Viscosity and Apparent Viscosity for Oil-Based Drilling Fluids Using a Committee Machine with Intelligent Systems

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The prediction of drilling mud rheological properties is a crucial topic with significant importance in analyzing frictional pressure loss and modeling the hole cleaning. Based on Marsh viscosity, mud density, and solid percent, this paper implements a committee machine intelligent system (CMIS) to predict apparent viscosity (AV) and plastic viscosity (PV) of oil-based mud. The established CMIS combines radial basis function neural network (RBFNN) and multilayer perceptron (MLP) via a quadratic model. Levenberg–Marquardt algorithm was applied to optimize the MLP, while differential evolution, genetic algorithm, artificial bee colony, and particle swarm optimization were used to optimize the RBFNN. A databank of 440 and 486 data points for AV and PV, respectively, gathered from various Algerian fields was considered to build the proposed models. Statistical and graphical assessment criteria were employed for investigating the performance of the proposed CMIS. The obtained results reveal that the developed CMIS models exhibit high performance in predicting AV and PV, with an overall average absolute relative deviation (AARD %) of 2.5485 and 4.1009 for AV and PV, respectively, and a coefficient of determination (R2) of 0.9806 and 0.9753 for AV and PV, respectively. A comparison of the CMIS-AV with Pitt's and Almahdawi's models demonstrates its higher prediction capability than these previously published correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Skalle, P.: Drilling Fluid Engineering. Bookboon, Copenhagen (2011)

    Google Scholar 

  2. Hamoodi, A.; Rahimy, A.A.; Khalid, A.W.: The effect of proper selection of drilling fluid on drilling operation in janbour field. Am. Sci. Res. J. Eng. Technol. Sci. 39, 224–234 (2018)

    Article  Google Scholar 

  3. Downs, J.D.; van Oort, E.; Redman, D.I.; Ripley, D.; Rothmann, B.: TAME: a new concept in water-based drilling fluids for shales. Offshore Eur. 93, 239–253 (1993). https://doi.org/10.2523/26699-ms

    Article  Google Scholar 

  4. Tang, G.; Yu, P.: Mud loss control while drilling with oil base drilling fluid. Drill. Fluid Complet. Fluid. (2017) 4

  5. Youcefi, M.R.; Hadjadj, A.; Boukredera, F.S.: New model for standpipe pressure prediction while drilling using Group Method of Data Handling. Petroleum (2021). https://doi.org/10.1016/j.petlm.2021.04.003

    Article  Google Scholar 

  6. Balhoff, M.T.; Lake, L.W.; Bommer, P.M.; Lewis, R.E.; Weber, M.J.; Calderin, J.M.: Rheological and yield stress measurements of non-Newtonian fluids using a Marsh Funnel. J. Pet. Sci. Eng. 77, 393–402 (2011)

    Article  Google Scholar 

  7. Marsh, H.N.: Properties and treatment of rotary mud. Trans. AIME. (1931). https://doi.org/10.2118/931234-g

    Article  Google Scholar 

  8. Pitt, M.J.: The Marsh funnel and drilling fluid viscosity: a new equation for field use. SPE Drill. Complet. 15, 3–6 (2000). https://doi.org/10.2118/62020-PA

    Article  Google Scholar 

  9. Almahdawi, F.H.M.; Al-Yaseri, A.Z.; Jasim, N.: Apparent viscosity direct from marsh funnel test. Iraqi J. Chem. Pet. Eng. 15, 51–57 (2014)

    Google Scholar 

  10. Wang, Z.; Lin, X.; Yu, T.; Zhou, N.; Zhong, H.; Zhu, J.: Formation and rupture mechanisms of visco-elastic interfacial films in polymer-stabilized emulsions. J. Dispers. Sci. Technol. 40, 612–626 (2019)

    Article  Google Scholar 

  11. Deosarkar, M.P.; Sathe, V.S.: Predicting effective viscosity of magnetite ore slurries by using artificial neural network. Powder Technol. 219, 264–270 (2012). https://doi.org/10.1016/j.powtec.2011.12.058

    Article  Google Scholar 

  12. Gharbi, R.B.C.; Mansoori, G.A.: An introduction to artificial intelligence applications in petroleum exploration and production. J. Pet. Sci. Eng. 49, 93–96 (2005). https://doi.org/10.1016/j.petrol.2005.09.001

    Article  Google Scholar 

  13. Sayyafzadeh, M.: A self-adaptive surrogate-assisted evolutionary algorithm for well placement optimization problems. In: Soc. Pet. Eng. - SPE/IATMI Asia Pacific Oil Gas Conf. Exhib. APOGCE 2015, https://doi.org/10.2118/176468-ms (2015)

  14. Helmy, T.; Hossain, M.I.; Adbulraheem, A.; Rahman, S.M.; Hassan, M.R.; Khoukhi, A.; Elshafei, M.: Prediction of non-hydrocarbon gas components in separator by using hybrid computational intelligence models. Neural Comput. Appl. 28, 635–649 (2017)

    Article  Google Scholar 

  15. Ahmadi, M.A.: Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm. J. Pet. Explor. Prod. Technol. (2011). https://doi.org/10.1007/s13202-011-0013-7

    Article  Google Scholar 

  16. Amar, M.N.; Zeraibi, N.; Redouane, K.: Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization. Petroleum 4, 419–429 (2018)

    Article  Google Scholar 

  17. Amar, M.N.: Prediction of hydrate formation temperature using gene expression programming, J. Nat. Gas Sci. Eng. 103879 (2021)

  18. Hegde, C.; Daigle, H.; Millwater, H.; Gray, K.: Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models. J. Pet. Sci. Eng. (2017). https://doi.org/10.1016/j.petrol.2017.09.020

    Article  Google Scholar 

  19. Youcefi, M.R.; Hadjadj, A.; Bentriou, A.; Boukredera, F.S.: Rate of penetration modeling using hybridization extreme learning machine and whale optimization algorithm. Earth Sci. Informatics. 13, 1351–1368 (2020)

    Article  Google Scholar 

  20. Razi, M.M.; Mazidi, M.; Razi, F.M.; Aligolzadeh, H.; Niazi, S.: Artificial neural network modeling of plastic viscosity, yield point, and apparent viscosity for water-based drilling fluids. J. Dispers. Sci. Technol. 34, 822–827 (2013). https://doi.org/10.1080/01932691.2012.704746

    Article  Google Scholar 

  21. da S. Bispo, V.D.; Scheid, C.M.; Calçada, L.A.; da C. Meleiro, L.A.: Development of an ANN-based soft-sensor to estimate the apparent viscosity of water-based drilling fluids. J. Pet. Sci. Eng. 150, 69–73 (2017). https://doi.org/10.1016/j.petrol.2016.11.030

    Article  Google Scholar 

  22. Elkatatny, S.M.: Determination the rheological properties of invert emulsion based mud on real time using artificial neural network. Pet. Eng. - SPE Kingdom Saudi Arab. Annu. Tech. Symp. Exhib, Soc (2016) https://doi.org/10.2118/182801-ms

    Book  Google Scholar 

  23. Al-Khdheeawi, E.A.; Mahdi, D.S.: Apparent viscosity prediction of water-based muds using empirical correlation and an artificial neural network. Energies 12, 3067 (2019)

    Article  Google Scholar 

  24. Mu, Y.; Liu, X.; Wang, L.: A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci. (Ny) 435, 40–58 (2018)

    Article  MathSciNet  Google Scholar 

  25. Vaferi, B.; Eslamloueyan, R.; Ayatollahi, S.: Application of Recurrent networks to classification of oil reservoir models in well-testing analysis, energy sources part A recover. Util. Environ. Eff. 37, 174–180 (2015). https://doi.org/10.1080/15567036.2011.582610

    Article  Google Scholar 

  26. Agwu, O.E.; Akpabio, J.U.; Alabi, S.B.; Dosunmu, A.: Artificial intelligence techniques and their applications in drilling fluid engineering: a review. J. Pet. Sci. Eng. 167, 300–315 (2018). https://doi.org/10.1016/j.petrol.2018.04.019

    Article  Google Scholar 

  27. Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K.: Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 160, 150–160 (2014). https://doi.org/10.1016/j.biortech.2014.01.021

    Article  Google Scholar 

  28. Amato, F.; López, A.; Peña-Méndez, E.M.; Vaňhara, P.; Hampl, A.; Havel, J.: Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11, 47–58 (2013). https://doi.org/10.2478/v10136-012-0031-x

    Article  Google Scholar 

  29. Zaabab, M.N.A.H.; Zhang, Q.-J.: A neural network modeling approach to circuit optimization and statistical design. Adv. Sci. Lett. 22, 555–556 (2016). https://doi.org/10.1166/asl.2016.6861

    Article  Google Scholar 

  30. Tighilt, Y.; Bouttout, F.; Khellaf, A.: Modeling and design of printed antennas using neural networks. Int. J. RF Microw. Comput. Eng. 21, 228–233 (2011). https://doi.org/10.1002/mmce.20509

    Article  Google Scholar 

  31. Aiken, M.; Krosp, J.; M.V.-J. of E.U., undefined 1995, A neural network for predicting total industrial production, IDEA Gr. Publ. (n.d.)

  32. Kumar, M.; Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput. Math. with Appl. 62, 3796–3811 (2011). https://doi.org/10.1016/j.camwa.2011.09.028

    Article  MathSciNet  MATH  Google Scholar 

  33. Nilsson, N.J.; Machines, L.: Learning machines. J. Chem. Inf. Model. 53(2018), 1689–1699 (1965). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  34. Hashem, S.: Optimal linear combinations of neural networks. Neural Netw. 10, 599–614 (1997). https://doi.org/10.1016/S0893-6080(96)00098-6

    Article  Google Scholar 

  35. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid neural networks, Brown Univ Providence RI Inst for Brain and Neural Systems, 1992

  36. Shokrollahi, A.; Tatar, A.; Safari, H.: On accurate determination of PVT properties in crude oil systems: Committee machine intelligent system modeling approach. J. Taiwan Inst. Chem. Eng. 55, 17–26 (2015). https://doi.org/10.1016/j.jtice.2015.04.009

    Article  Google Scholar 

  37. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge (1992)

    Book  Google Scholar 

  38. Ahmadi, M.-A.; Bahadori, A.; Shadizadeh, S.R.: A rigorous model to predict the amount of Dissolved Calcium Carbonate Concentration throughout oil field brines: Side effect of pressure and temperature. Fuel 139, 154–159 (2015). https://doi.org/10.1016/J.FUEL.2014.08.044

    Article  Google Scholar 

  39. Ahmadi, M.A.; Ebadi, M.; Marghmaleki, P.S.; Fouladi, M.M.: Evolving predictive model to determine condensate-to-gas ratio in retrograded condensate gas reservoirs. Fuel 124, 241–257 (2014). https://doi.org/10.1016/j.fuel.2014.01.073

    Article  Google Scholar 

  40. Panigrahi, B.K.; Shi, Y.; Lim, M.-H.: Handbook of swarm intelligence: concepts, principles and applications, Springer 2011.

  41. Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory, In: MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., IEEE, 1995: pp. 39–43.

  42. Ahmadi, M.A.; Shadizadeh, S.R.: New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept. Fuel 102, 716–723 (2012)

    Article  Google Scholar 

  43. Liu, Y.; Chen, S.; Guan, B.; Xu, P.: Layout optimization of large-scale oil–gas gathering system based on combined optimization strategy. Neurocomputing 332, 159–183 (2019)

    Article  Google Scholar 

  44. Prata, D.M.; Schwaab, M.; Lima, E.L.; Pinto, J.C.: Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: application for an industrial polypropylene reactor. Chem. Eng. Sci. 64, 3953–3967 (2009). https://doi.org/10.1016/J.CES.2009.05.028

    Article  Google Scholar 

  45. Shi, Y.; Eberhart, R.: Modified particle swarm optimizer. In: Proc. IEEE Conf. Evol. Comput. ICEC, pp. 69–73. https://doi.org/10.1109/icec.1998.699146(1998)

  46. Storn, R.; Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  47. Storn, R.: Differential evolution design of an IIR-filter. In: Proc. IEEE Int. Conf. Evol. Comput., pp. 268–273. https://doi.org/10.1109/ICEC.1996.542373 (1996)

  48. Karaboga, D.: An idea based on honey bee swarm for numerical optimization (Tech. Rep. No. TR06), Kayseri, Turkey Erciyes Univ. (2005)

  49. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  50. Anifowose, F.; Khoukhi, A.; Abdulraheem, A.: Investigating the effect of training–testing data stratification on the performance of soft computing techniques: an experimental study. J. Exp. Theor. Artif. Intell. 29, 517–535 (2017)

    Article  Google Scholar 

  51. Rousseeuw, P.J.; Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (2005)

    MATH  Google Scholar 

  52. Gharagheizi, F.; Eslamimanesh, A.; Sattari, M.; Tirandazi, B.; Mohammadi, A.H.; Richon, D.: Evaluation of thermal conductivity of gases at atmospheric pressure through a corresponding states method. Ind. Eng. Chem. Res. 51, 3844–3849 (2012). https://doi.org/10.1021/ie202826p

    Article  Google Scholar 

  53. Mohammadi, A.H.; Eslamimanesh, A.; Gharagheizi, F.; Richon, D.: A novel method for evaluation of asphaltene precipitation titration data. Chem. Eng. Sci. 78, 181–185 (2012). https://doi.org/10.1016/j.ces.2012.05.009

    Article  Google Scholar 

  54. Mohammadi, A.H.; Gharagheizi, F.; Eslamimanesh, A.; Richon, D.: Evaluation of experimental data for wax and diamondoids solubility in gaseous systems. Chem. Eng. Sci. 81, 1–7 (2012). https://doi.org/10.1016/j.ces.2012.06.051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Riad Youcefi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 49 KB)

Appendices

Appendix A. Statistical Formulas

The statistical criteria employed to evaluate the proposed models are expressed as follows:

$$RMSE = \sqrt {\frac{1}{n}\mathop \sum \limits_{i = 1}^{n} \left( {Y_{{{\text{exp}}}} - Y_{{{\text{pred}}}} } \right)^{2} }$$
(A.1)
$$R^{2} = 1 - \frac{{\mathop \sum \nolimits_{i = 1}^{n} (Y_{{{\text{exp}}}} - Y_{{{\text{pred}}}} )^{2} }}{{\mathop \sum \nolimits_{i = 1}^{n} (Y_{{{\text{exp}}}} - Y_{{{\text{pred}}}} )^{2} }}$$
(A.2)
$$AARD = \frac{1}{n}\mathop \sum \limits_{i = 1}^{n} \left| {\frac{{Y_{{{\text{exp}}}} - Y_{{{\text{pred}}}} }}{{Y_{{{\text{exp}}}} }}} \right| \times 100$$
(A.3)

where \(Y_{{{\text{exp}}}}\) and \(Y_{{{\text{pred}}}}\) represent the experimental and predicted values of viscosity, respectively.

Appendix B. Supplementary Data

A supplementary file was uploaded to the system. This file contains the obtained weight factors \(C_{1} ,C_{2} \ldots C_{10}\) of the AV-CMIS and PV-CMIS, the centers \(C_{ij}\), the weights \(w_{i}\), and the bias of the AV-RBFNN-ABC, AV-RBFNN-DE, AV-RBFNN-PSO, PV-RBFNN-ABC, PV-RBFNN-DE, and PV-RBFNN-PSO;

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youcefi, M.R., Hadjadj, A., Bentriou, A. et al. Real-Time Prediction of Plastic Viscosity and Apparent Viscosity for Oil-Based Drilling Fluids Using a Committee Machine with Intelligent Systems. Arab J Sci Eng 47, 11145–11158 (2022). https://doi.org/10.1007/s13369-021-05748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05748-8

Keywords

Navigation