Log in

Temperature-Controlled Triaxial Compression Test of Tire Strip-Reinforced Silty Clay

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Through triaxial compression test, the effect of different confining pressures, temperatures and volume reinforcement ratios on the strength of tire strip-reinforced silty clay was investigated. The stress–strain characteristics of the tire-reinforced silty clay were normalized, and the stress–strain relationship normalization equation was established. The test results show that the shear strength of tire strip-reinforced silty clay increases with the increase in confining pressure, and the reinforcement effect increases with the increase in confining pressure. At different temperatures, the shear strength is negatively correlated with temperature. At a confining pressure of 400 kPa, the shear strength of the sample with a volume reinforcement ratio of 3% was 3.16 times that of the unreinforced sample. Under the ratio of 3% volume reinforcement, the effect coefficient under various confining pressures was 2–3 times of that under unreinforced conditions. The stress–strain relationship of reinforced silty clay is normalized by using (σ1 − σ3)ult as the normalization factor, which has good normalization characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

I, the corresponding author, confirm that all of the content, figures (drawings, charts, photographs, etc.), and tables in the submitted work are either original work created by the authors listed on the manuscript or work for which permission to re-use has been obtained from the creator. The data used to support the findings of this study are available from the corresponding author upon request, and the readers can access the data supporting the conclusions of the study.

References

  1. Gaudio, D.; Masini, L.; Rampello, S.: A performance-based approach to design reinforced-earth retaining walls. Geotext. Geomembr. 46(4), 470–485 (2018)

    Article  Google Scholar 

  2. Yang, K.H.; Thuo, J.N.; Chen, J.W.; Liu, C.N.: Failure investigation of a geosynthetic-reinforced soil slope subjected to rainfall. Geosynth. Int. 26(1), 42–65 (2019)

    Article  Google Scholar 

  3. Hegde, A.: Geocell reinforced foundation beds-past findings, present trends and future prospects: a state-of-the-art review. Constr. Build. Mater. 154, 658–674 (2017)

    Article  Google Scholar 

  4. Gu, F.; Luo, X.; Luo, R.; Lytton, R.L.; Hajj, E.Y.; Siddharthan, R.V.: Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test. Constr. Build. Mater. 122, 214–230 (2016)

    Article  Google Scholar 

  5. Dehghan, A.; Hamidi, A.: Triaxial shear behaviour of sand-gravel mixtures reinforced with cement and fibre. Int. J. Geotech. Eng. 10(5), 510–520 (2016)

    Article  Google Scholar 

  6. Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; Aldava, M.: Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories. Geotext. Geomembr. 45(5), 422–429 (2017)

    Article  Google Scholar 

  7. Li, L.; Shao, W.; Li, Y.; Cetin, B.: Effects of climatic factors on mechanical properties of cement and fiber reinforced clays. Geotech. Geol. Eng. 33(3), 537–548 (2015)

    Article  Google Scholar 

  8. Burghignoli, A.; Desideri, A.; Miliziano, S.: A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J. 37(4), 764–780 (2000)

    Article  Google Scholar 

  9. Cekerevac, C.; Laloui, L.: Experimental study of thermal effects on the mechanical behaviour of a clay. Int. J. Numer. Anal. Meth. Geomech. 28(3), 209–228 (2004)

    Article  Google Scholar 

  10. Abuel-Naga, H.M.; Bergado, D.T.; Bouazza, A.: Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng. Geol. 89(1), 144–154 (2007)

    Article  Google Scholar 

  11. Tsutsumi, A.; Tanaka, H.: Combined effects of strain rate and temperature on consolidation behavior of clayey soils. Soils Found. 52(2), 207–215 (2012)

    Article  Google Scholar 

  12. Jarad, N.; Cuisinier, O.; Masrouri, F.: Effect of temperature and strain rate on the consolidation behaviour of compacted clayey soils. Eur. J. Environ. Civ. Eng. 23(7), 789–806 (2019)

    Article  Google Scholar 

  13. Kang, X.; Cao, J.; Bate, B.: Large-strain strength of polymer-modified kaolinite and fly ash-kaolinite mixtures. J. Geotech. Geoenviron. Eng. 145(2), 04018106 (2019)

    Article  Google Scholar 

  14. Kang, X.; Bate, B.; Chen, R.P.; Yang, W.; Wang, F.: Physicochemical and mechanical properties of polymer-amended kaolinite and fly ash-kaolinite mixtures. J. Mater. Civ. Eng. 31(6), 04019064 (2019)

    Article  Google Scholar 

  15. Zornberg, J.G.: Functions and applications of geosynthetics in roadways. Procedia Eng. 189, 298–306 (2017)

    Article  Google Scholar 

  16. Touze-Foltz, N.; Bannour, H.; Barral, C.; Stoltz, G.: A review of the performance of geosynthetics for environmental protection. Geotext. Geomembr. 44(5), 656–672 (2016)

    Article  Google Scholar 

  17. Michalowski, R.L.; Čermák, J.: Triaxial compression of sand reinforced with fibers. J. Geotech. Geoenviron. Eng. 129(2), 125–136 (2003)

    Article  Google Scholar 

  18. Yetimoglu, T.; Salbas, O.: A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotext. Geomembr. 21(2), 103–110 (2003)

    Article  Google Scholar 

  19. Ramirez, G.G.D.; Casagrande, M.D.T.: Experimental study of granular rubber waste tire reinforced soil for geotechnical applications. Key Eng. Mater. 600, 585–596 (2014)

    Article  Google Scholar 

  20. Naval, S.; Kumar, A.; Bansal, S.K.: Model tests on footing resting on waste tire fiber reinforced granular soil. Int. J. Geotech. Eng. 8(4), 469–476 (2014)

    Article  Google Scholar 

  21. Attom, M.F.: The use of shredded waste tires to improve the geotechnical engineering properties of sands. Environ. Geol. 49(4), 497–503 (2006)

    Article  Google Scholar 

  22. Balunaini, U.; Mohan, V.K.D.; Prezzi, M.; Salgado, R.: Shear strength of tyre chip–sand and tyre shred–sand mixtures. Proc. Inst. Civ. Eng. Geotech. Eng. 167(6), 585–595 (2014)

    Article  Google Scholar 

  23. Kim, K.S.; Yoon, Y.W.; Yoon, G.L.: Pullout behavior of cell-type tires in reinforced soil structures. KSCE J. Civ. Eng. 15(7), 1209–1217 (2011)

    Article  Google Scholar 

  24. Yoon, Y.W.; Heo, S.B.; Kim, K.S.: Geotechnical performance of waste tires for soil reinforcement from chamber tests. Geotext. Geomembr. 26(1), 100–107 (2008)

    Article  Google Scholar 

  25. Denine, S.; Della, N.: Effect of geotextile reinforcement on shear strength of sandy soil: laboratory study. Stud Geotech Mech 38(4), 3–13 (2016)

    Article  Google Scholar 

  26. Cicek, E.; Guler, E.; Yetimoglu, T.: Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil. Soils Found. 55(4), 661–677 (2015)

    Article  Google Scholar 

  27. Fan, C.C.; Su, C.F.: Effect of soil moisture content on the deformation behaviour of root-reinforced soils subjected to shear. Plant Soil 324(1–2), 57–69 (2009)

    Article  Google Scholar 

  28. Danso, H.; Martinson, D.B.; Ali, M.; Williams, J.: Effect of fibre aspect ratio on mechanical properties of soil building blocks. Constr. Build. Mater. 83, 314–319 (2015)

    Article  Google Scholar 

  29. Zornberg, J.G.; Cabral, A.R.; Viratjandr, C.: Behaviour of tire shred-sand mixtures. Can. Geotech. J. 41(2), 227–241 (2015)

    Article  Google Scholar 

  30. Prashanth, V.; Murali, K.A.; Dash, S.K.: Pullout tests using modified direct shear test setup for measuring soil-geosynthetic interaction parameters. Int. J. Geosynth. Ground Eng. 2(2), 10 (2016)

    Article  Google Scholar 

  31. Yavari, N.; Tang, A.M.; Pereira, J.M.; Hassen, G.: Effect of temperature on the shear strength of soils and the soil–structure interface. Can. Geotech. J. 53(7), 1186–1194 (2016)

    Article  Google Scholar 

  32. Nouri, S.; Nechnech, A.; Lamri, B.; Lopes, M.L.: Triaxial test of drained sand reinforced with plastic layers. Arab. J. Geosci. 9(1), 53 (2016)

    Article  Google Scholar 

  33. Ladd, C.C.; Foott, R.; Ishihara, K.; Schlosser, F.; Poulos, H.G.: Stress deformation and strength characteristics. In: International Conference on Soil Mechanics and Foundation Engineering, 9th, 1977, Tokyo, Japan, vol. 2 (1977)

  34. Kondner, R.L.: Hyperbolic stress-strain response: cohesive soils. J. Soil Mech. Found. Div. 89(1), 115–144 (1963)

    Google Scholar 

Download references

Acknowledgements

The work in this paper is supported by grants from National Natural Science Foundation of China (NSFC) (No. 51678223), Hubei Provincial Education Department Key Project (No. D20171402), and Major Technological Innovation Projects of Hubei (No. 2017AAA128). The authors would like to express their appreciation to these financial assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

I, the corresponding author, am responsible for co-authors declaring their interests, and I declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Shu, H., **ao, H. et al. Temperature-Controlled Triaxial Compression Test of Tire Strip-Reinforced Silty Clay. Arab J Sci Eng 45, 4247–4256 (2020). https://doi.org/10.1007/s13369-020-04428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04428-3

Keywords

Navigation