Log in

Limited HIV-associated neuropathologies and lack of immune activation in sub-saharan African individuals with late-stage subtype C HIV-1 infection

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author [CW].

References

  • Albalawi YA, Narasipura SD, Olivares LJ, Al-Harthi L (2022) CD4(dim) CD8(bright) T cells home to the brain and mediate HIV Neuroinvasion. J Virol 96(15):e0080422

    Article  PubMed  Google Scholar 

  • Angelovich TA, Cochrane CR, Zhou J, Tumpach C, Byrnes SJ, Jamal Eddine J et al (2023) Regional Analysis of Intact and defective HIV proviruses in the brain of Viremic and virally suppressed people with HIV. Ann Neurol 94(4):798–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN et al (2017) Brain macrophages in simian immunodeficiency Virus-Infected, antiretroviral-suppressed macaques: a functional Latent Reservoir. Mbio;8(4)

  • Bade AN, Gorantla S, Dash PK, Makarov E, Sajja BR, Poluektova LY et al (2016) Manganese-enhanced magnetic resonance imaging reflects Brain Pathology during Progressive HIV-1 infection of Humanized mice. Mol Neurobiol 53(5):3286–3297

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Freed EO, Wolf KM, Robinson SM, Franko M, Kumar VB (2001) Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol 75(10):4681–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsch YC, Loos C, Rossignol E, Fajnzylber JM, Yuan D, Avihingsanon A et al (2021) Viral Rebound kinetics correlate with distinct HIV antibody features. Mbio;12(2)

  • Bertrand L, Cho HJ, Toborek M (2019) Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 142:502–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher T, Liang SJ, Brown AM (2022) Advancing basic and translational research to deepen understanding of the molecular immune-mediated mechanisms regulating long-term persistence of HIV-1 in microglia in the adult human brain. J Leukoc Biol 112(5):1223–1231

    Article  CAS  PubMed  Google Scholar 

  • Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF et al (2020) HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 130(4):1699–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HK, Hattler JB, Narola J, Babbar H, Cai Y, Abdel-Mohsen M et al (2022) Development of Droplet Digital PCR-Based assays to quantify HIV Proviral and Integrated DNA in Brain tissues from Viremic individuals with encephalitis and virally suppressed aviremic individuals. Microbiol Spectr 10(1):e0085321

    Article  PubMed  Google Scholar 

  • Cochrane CR, Angelovich TA, Byrnes SJ, Waring E, Guanizo AC, Trollope GS et al (2022) Intact HIV proviruses Persist in the Brain despite viral suppression with ART. Ann Neurol 92(4):532–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen MS, Shaw GM, McMichael AJ, Haynes BF (2011) Acute HIV-1 infection. N Engl J Med 364(20):1943–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E et al (2018) Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med 24(7):923–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das Gupta J, Satishchandra P, Gopukumar K, Wilkie F, Waldrop-Valverde D, Ellis R et al (2007) Neuropsychological deficits in human immunodeficiency virus type 1 clade C-seropositive adults from South India. J Neurovirol 13(3):195–202

    Article  CAS  Google Scholar 

  • de Almeida SM, Ribeiro CE, de Pereira AP, Badiee J, Cherner M, Smith D et al (2013) Neurocognitive impairment in HIV-1 clade C-versus B-infected individuals in Southern Brazil. J Neurovirol 19(6):550–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Valle L, Pina-Oviedo S (2006) HIV disorders of the brain: pathology and pathogenesis. Front Biosci 11:718–732

    Article  PubMed  Google Scholar 

  • Dohgu S, Banks WA (2013) Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 10(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA (2022) Identification, quantification, and characterization of HIV-1 reservoirs in the human brain. Cells 11:15

    Article  Google Scholar 

  • Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV et al (2020) HIV RNA rebound in seminal plasma after antiretroviral treatment interruption. J Virol;94(15)

  • Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G et al (2013) Encephalitis with infiltration by CD8 + lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol 23(5):525–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S et al (2019) Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis 19(2):143–155

    Article  PubMed  Google Scholar 

  • Hong SZ, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kaufman R (2020) ART and science of kee** HIV out of the blood supply. Blood 136(11):1223–1224

    Article  CAS  PubMed  Google Scholar 

  • Killingsworth L, Spudich S (2022) Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 44(5):709–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kincer LP, Joseph SB, Gilleece MM, Hauser BM, Sizemore S, Zhou S et al (2023) Rebound HIV-1 in cerebrospinal fluid after antiviral therapy interruption is mainly clonally amplified R5 T cell-tropic virus. Nat Microbiol 8(2):260–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q et al (2019) Macrophages but not astrocytes Harbor HIV DNA in the brains of HIV-1-Infected aviremic individuals on suppressive antiretroviral therapy. J Neuroimmune Pharmacol 14(1):110–119

    Article  PubMed  Google Scholar 

  • Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB et al (2016) HIV DNA is frequently present within Pathologic Tissues Evaluated at autopsy from combined antiretroviral therapy-treated patients with undetectable viral loads. J Virol 90(20):8968–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Julius P, Kang G, West JT, Wood C (2022a) Subtype C HIV-1 reservoirs throughout the body in ART-suppressed individuals. JCI Insight;7(20)

  • Liu X, Bae C, Gelman BB, Chung JM, Tang SJ (2022b) A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 145(11):4108–4123

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu SM, Tremblay ME, King IL, Qi J, Reynolds HM, Marker DF et al (2011) HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS ONE 6(9):e23915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutgen V, Narasipura SD, Barbian HJ, Richards M, Wallace J, Razmpour R et al (2020) HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathog 16(6):e1008381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastrorosa I, Pinnetti C, Brita AC, Mondi A, Lorenzini P, Del Duca G et al (2023) Declining prevalence of human immunodeficiency virus (HIV)-Associated Neurocognitive disorders in recent years and Associated Factors in a large cohort of antiretroviral therapy-treated individuals living with HIV. Clin Infect Dis 76(3):E629–E37

    Article  CAS  PubMed  Google Scholar 

  • McMyn NF, Varriale J, Fray EJ, Zitzmann C, MacLeod H, Lai J et al (2023) The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J Clin Invest;133(17)

  • Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63(3):366–376

    Article  CAS  PubMed  Google Scholar 

  • Moonim MT, Alarcon L, Freeman J, Mahadeva U, van der Walt JD, Lucas SB (2010) Identifying HIV infection in diagnostic histopathology tissue samples–the role of HIV-1 p24 immunohistochemistry in identifying clinically unsuspected HIV infection: a 3-year analysis. Histopathology 56(4):530–541

    Article  PubMed  Google Scholar 

  • Murray J, Meloni G, Cortes EP, KimSilva A, Jacobs M, Ramkissoon A et al (2022) Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV. Acta Neuropathol Commun 10(1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musumali J, Julius P, Siyumbwa SN, Yalcin D, Kang G, Munsaka S et al (2022) Systematic post-mortem analysis of brain tissue from an HIV-1 subtype C viremic decedent revealed a paucity of infection and pathology. J Neurovirol 28(4–6):527–536

    Article  PubMed  Google Scholar 

  • O’Connor EE, Zeffiro TA, Zeffiro TA (2018) Brain structural changes following HIV infection: Meta-Analysis. AJNR Am J Neuroradiol 39(1):54–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira MF, Pankow A, Vollbrecht T, Kumar NM, Cabalero G, Ignacio C et al (2023) Evaluation of Archival HIV DNA in brain and lymphoid tissues. J Virol 97(6):e0054323

    Article  PubMed  Google Scholar 

  • Payne D, Wadonda-Kabondo N, Wang A, Smith-Sreen J, Kabaghe A, Bello G et al (2023) Trends in HIV prevalence, incidence, and progress towards the UNAIDS 95-95-95 targets in Malawi among individuals aged 15–64 years: population-based HIV impact assessments, 2015-16 and 2020-21. Lancet HIV 10(9):e597–e605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rall GF, Mucke L, Oldstone MB (1995) Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo. J Exp Med 182(5):1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Rao VR, Sas AR, Eugenin EA, Siddappa NB, Bimonte-Nelson H, Berman JW et al (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci 28(40):10010–10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel D, Ghate M, Nene M, Paranjape RS, Mehendale SM, Bollinger RC et al (2006) Screening for human immunodeficiency virus (HIV) dementia in an HIV clade C-infected population in India. J Neurovirol 12(1):34–38

    Article  CAS  PubMed  Google Scholar 

  • Rom S, Pacifici M, Passiatore G, Aprea S, Waligorska A, Del Valle L et al (2011) HIV-1 Tat binds to SH3 domains: cellular and viral outcome of Tat/Grb2 interaction. Biochim Biophys Acta 1813(10):1836–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadagopal S, Lorey SL, Barnett L, Basham R, Lebo L, Erdem H et al (2008) Enhancement of human immunodeficiency virus (HIV)-specific CD8 + T cells in cerebrospinal fluid compared to those in blood among antiretroviral therapy-naive HIV-positive subjects. J Virol 82(21):10418–10428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Creegan M, Tokarev A, Hsu D, Slike BM, Sacdalan C et al (2021) Cerebrospinal fluid CD4 + T cell infection in humans and macaques during acute HIV-1 and SHIV infection. PLoS Pathog 17(12):e1010105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy A, Marwaha PK, Worku DA (2023) CD8 Encephalitis in HIV: a review of this emerging entity. J Clin Med;12(3)

  • Shiels MS, Landgren O, Costello R, Zingone A, Goedert JJ, Engels EA (2012) Free light chains and the risk of AIDS-defining opportunistic infections in HIV-infected individuals. Clin Infect Dis 55(10):e103–e108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreeram S, Ye FC, Garcia-Mesa Y, Nguyen K, El Sayed A, Leskov K et al (2022) The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol 43(8):630–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11(3):e1004720

    Article  PubMed  PubMed Central  Google Scholar 

  • Subra C, Trautmann L (2019) Role of T lymphocytes in HIV Neuropathogenesis. Curr HIV/AIDS Rep 16(3):236–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Zaunders J, Gates TM, Levert A, Butterly S, Liu Z et al (2022) Elevation of cell-associated HIV-1 transcripts in CSF CD4 + T cells, despite effective antiretroviral therapy, is linked to brain injury. Proc Natl Acad Sci U S A 119(48):e2210584119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YY, Chaillon A, Gianella S, Wong LM, Li DJ, Simermeyer TL et al (2023) Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J Clin Invest;133(12)

  • Thompson KA, Cherry CL, Bell JE, McLean CA (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179(4):1623–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tso FY, Kang G, Kwon EH, Julius P, Li Q, West JT et al (2018) Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome. PLoS ONE 13(7):e0201325

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Liu MX, Lu QD, Farrell M, Lappin JM, Shi J et al (2020) Global prevalence and burden of HIV-associated neurocognitive disorder a meta-analysis. Neurology 95(19):E2610–E21

    Article  CAS  PubMed  Google Scholar 

  • Weekes MP, Wills MR, Sissons JG, Carmichael AJ (2006) Large HIV-specific CD8 cytotoxic T-lymphocyte (CTL) clones reduce their overall size but maintain high frequencies of memory CTL following highly active antiretroviral therapy. Immunology 118(1):25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley CA (2003) Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol 13(3):415 author reply– 6

    Article  PubMed  Google Scholar 

  • Williams ME, Naude PJW (2024) The relationship between HIV-1 neuroinflammation, neurocognitive impairment and encephalitis pathology: a systematic review of studies investigating post-mortem brain tissue. Rev Med Virol 34(1):e2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Liu L, Cheung KW, Wang H, Lu X, Cheung AK et al (2016) Brain Invasion by CD4(+) T cells infected with a Transmitted/Founder HIV-1BJZS7 during Acute Stage in Humanized mice. J Neuroimmune Pharmacol 11(3):572–583

    Article  PubMed  Google Scholar 

  • **e Y, Zhu J, Lan G, Ruan Y (2022) Benefits of early ART initiation on mortality among people with HIV. Lancet HIV 9(6):e377

    Article  CAS  PubMed  Google Scholar 

  • Zarkali A, Gorgoraptis N, Miller R, John L, Merve A, Thust S et al (2017) CD8 + encephalitis: a severe but treatable HIV-related acute encephalopathy. Pract Neurol 17(1):42–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the deceased and their families for participation in this study, and to the team members and investigators of University of Zambia/University Teaching Hospital. We also thank our former lab member, Dawn Eggert, for her work and effort on sample collection and processing.

Funding

Fogarty International D43 TW010354; National Cancer Institute U54CA221204, R01NS074903 and R01DA044920 through CW. PJ, and VM are Fogarty Fellows.

Author information

Authors and Affiliations

Authors

Contributions

ZL performed experiments, analyzed the data, and wrote the manuscript. PJ led sample collection. VM aided with tissue collection and processing and obtaining clinical information. GK conducted H&E staining. LDV provided pathology expertise and helped edit the manuscript. JTW supported methodology, data analysis, and manuscript editing. CW conceived of and led the study.

Corresponding author

Correspondence to Charles Wood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Julius, P., Mudenda, V. et al. Limited HIV-associated neuropathologies and lack of immune activation in sub-saharan African individuals with late-stage subtype C HIV-1 infection. J. Neurovirol. (2024). https://doi.org/10.1007/s13365-024-01219-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13365-024-01219-6

Keywords

Navigation