Log in

False-Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Detection and quantitation of protein–ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2 % and <0.8 % are calculated for SPROX experiments using Q-TOF and Orbitrap mass spectrometer systems, respectively. Our results indicate that the false-positive rate is largely determined by random errors associated with the mass spectral analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  Google Scholar 

  2. Oshannessy, D.J., Brighamburke, M., Soneson, K.K., Hensley, P., Brooks, I.: Determination of rate and equilibrium binding constants for macromolecular interactions using surface-plasmon resonance—use of nonlinear least-squares analysis-methods. Anal. Biochem. 212, 457–468 (1993)

    Article  CAS  Google Scholar 

  3. Fields, S., Song, O.K.: A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989)

    Article  CAS  Google Scholar 

  4. Fashena, S.J., Serebriiskii, I., Golemis, E.A.: The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 250, 1–14 (2000)

    Article  CAS  Google Scholar 

  5. SenGupta, D.J., Zhang, B.L., Kraemer, B., Pochart, P., Fields, S., Wickens, M.: A three-hybrid system to detect RNA–protein interactions in vivo. Proc. Natl. Acad. Sci. U.S.A. 93, 8496–8501 (1996)

    Article  CAS  Google Scholar 

  6. Templin, M.F., Stoll, D., Schrenk, M., Traub, P.C., Vohringer, C.F., Joos, T.O.: Protein microarray technology. Trends Biotechnol. 20, 160–166 (2002)

    Article  CAS  Google Scholar 

  7. Ghaemmaghami, S., Fitzgerald, M.C., Oas, T.G.: A quantitative, high-throughput screen for protein stability. Proc. Natl. Acad. Sci. U.S.A. 97, 8296–8301 (2000)

    Article  CAS  Google Scholar 

  8. Ghaemmaghami, S., Oas, T.G.: Quantitative protein stability measurement in vivo. Nat. Struct. Biol. 8, 879–882 (2001)

    Article  CAS  Google Scholar 

  9. Siburt, C.J.P., Roulhac, P.L., Weaver, K.D., Noto, J.M., Mietzner, T.A., Cornelissen, C.N., Fitzgerald, M.C., Crumbliss, A.L.: Hijacking transferrin bound iron: protein–receptor interactions involved in iron transport in N-gonorrhoeae. Metallomics 1, 249–255 (2009)

    Article  CAS  Google Scholar 

  10. West, G.M., Tang, L., Fitzgerald, M.C.: Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass-spectrometry based strategy. Anal. Chem. 80, 4175–4185 (2008)

    Article  CAS  Google Scholar 

  11. West, G.M., Tucker, C.L., Xu, T., Park, S.K., Han, X.M., Yates, J.R., Fitzgerald, M.C.: Quantitative proteomics approach for identifying protein–drug interactions in complex mixtures using protein stability measurements. Proc. Natl. Acad. Sci. U.S.A. 107, 9078–9082 (2010)

    Article  CAS  Google Scholar 

  12. Strickland, E.C., Geer, M.A., Tran, D.T., Adhikari, J., West, G.M., DeArmond, P.D., Xu, Y., Fitzgerald, M.C.: Thermodynamic analysis of protein–ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat. Protoc. 8, 148–161 (2013)

    Article  CAS  Google Scholar 

  13. DeArmond, P.D., Xu, Y., Strickland, E.C., Daniels, K.G., Fitzgerald, M.C.: Thermodynamic analysis of protein–ligand interactions in complex biological mixtures using a shotgun proteomics approach. J. Prot. Res. 10, 4948–4958 (2011)

    Article  CAS  Google Scholar 

  14. DeArmond, P.D., West, G.M., Huang, H.T., Fitzgerald, M.C.: Stable isotope labeling strategy for protein–ligand binding analysis in multi-component protein mixtures. J. Am. Soc. Mass Spectrom. 22, 418–430 (2011)

    Article  CAS  Google Scholar 

  15. Liu, P.F., Kihara, D., Park, C.: Energetics-based discovery of protein–ligand interactions on a proteomic scale. J. Mol. Biol. 408, 147–162 (2011)

    Article  Google Scholar 

  16. Chang, Y., Schlebach, J.P., VerHeul, R.A., Park, C.: Simplified proteomics approach to discover protein–ligand interactions. Protein Sci. 21, 1280–1287 (2012)

    Article  CAS  Google Scholar 

  17. Park, C.W., Marqusee, S.: Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat. Methods 2, 207–212 (2005)

    Article  CAS  Google Scholar 

  18. Kim, H., Kasper, A.C., Moon, E.J., Park, Y., Wooten, C.M., Dewhirst, M.W., Hong, J.Y.: Nucleophilic addition of organozinc reagents to 2-sulfonyl cyclic ethers: stereoselective synthesis of manassantins A and B. Org. Lett. 11, 89–92 (2009)

    Article  Google Scholar 

  19. Hossain, C.F., Kim, Y.P., Baerson, S.R., Zhang, L., Bruick, R.K., Mohammed, K.A., Agarwal, A.K., Nagle, D.G., Zhou, Y.D.: Saururus cernuus lignans—potent small molecule inhibitors of hypoxia-inducible factor-1. Biochem. Biophys. Res. Commun. 333, 1026–1033 (2005)

    Article  CAS  Google Scholar 

  20. Kasper, A.C., Moon, E.J., Hu, X.Q., Park, Y., Wooten, C.M., Kim, H., Yang, W.T., Dewhirst, M.W., Hong, J.Y.: Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations. Bioorg. Med. Chem. Lett. 19, 3783–3786 (2009)

    Article  CAS  Google Scholar 

  21. Christoforou, A.L., Lilley, K.S.: Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal. Bioanal. Chem. 404, 1029–1037 (2012)

    Article  CAS  Google Scholar 

  22. Morand, K., Talbo, G., Mann, M.: Oxidation of peptides during electrospray-ionization. Rapid Commun. Mass Spectrom. 7, 738–743 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work by a grant from the National Institutes of Health (GM084174) to M.C.F. and by a Research Scholar Grant (122057-RSG-12-045-01-CDD) from the American Cancer Society to J.H. The authors also thank Lisa Jones and the Proteomics Facility at the Fred Hutchinson Cancer Center for the collection of Orbitrap data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Fitzgerald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strickland, E.C., Geer, M.A., Hong, J. et al. False-Positive Rate Determination of Protein Target Discovery using a Covalent Modification- and Mass Spectrometry-Based Proteomics Platform. J. Am. Soc. Mass Spectrom. 25, 132–140 (2014). https://doi.org/10.1007/s13361-013-0754-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0754-2

Key words

Navigation