Log in

Trends and uncertainties in surface air temperature over the Tibetan Plateau, 1951–2013

  • Special Collection on Climate System Research in China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Trends and uncertainties of surface air temperature over the Tibetan Plateau (TP) are evaluated by using observations at 100 meteorological stations during the period 1951–2013. The sampling error variances of gridded monthly data are estimated for every month and every grid box of data. The gridded data and their sampling error variances are used to calculate TP averages, their trends, and associated uncertainties. It is shown that large sampling error variances dominate northern and western TP, while small variances appear over southern and eastern TP. Every month from January to December has a positive linear trend during the study period. February has the largest trend of 0.34 ± 0.18°C (10 yr)–1, and April the smallest at 0.15 ± 0.11°C (10 yr)–1. The uncertainties decrease steadily with time, implying that they are not large enough to alter the TP warming trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arguez, A., T. R. Karl, M. F. Squires, et al., 2013: Uncertainty in annual rankings from NOAA’s global temperature time series. Geophys. Res. Lett., 40, 5965–5969, doi: 10.1002/2013 GL057999.

    Article  Google Scholar 

  • Barnett, T. P., G. Hegerl, T. Knutson, et al., 2000: Uncertainty levels in predicted patterns of anthropogenic climate change. J. Geophys. Res., 105, 15525–15542, doi: 10.1029/2000JD 900162.

    Article  Google Scholar 

  • Böhm, R., P. D. Jones, J. Hiebl, et al., 2010: The early instrumental warm-bias: A solution for long central European temperature series 1760–2007. Climatic Change, 101, 41–67, doi: 10.1007/s10584-009-9649-4.

    Article  Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, et al., 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111(D12), D12106, doi: 10.1029/2005JD006548.

    Article  Google Scholar 

  • Chen, H. P., and J. Q. Sun, 2015: Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Climate, 28, 5430–5447, doi: 10.1175/JCLI-D-14-00707.1.

    Article  Google Scholar 

  • Cochran, W. G., 1977: Sampling Techniques. 3rd Ed, Wiley, 428 pp.

    Google Scholar 

  • Folland, C. K., N. A. Rayner, S. J. Brown, et al., 2001: Global temperature change and its uncertainties since 1861. Geophys. Res. Lett., 28, 2621–2624, doi: 10.1029/2001GL012877.

    Article  Google Scholar 

  • Guo, D. L., and H. J. Wang, 2011: The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol., 32, 1775–1781, doi: 10.1002/joc.2388.

    Article  Google Scholar 

  • Hegerl, G. C., P. D. Jones, and T. P. Barnett, 2001: Effect of observational sampling error on the detection of anthropogenic climate change. J. Climate, 14, 198–207, doi: 10.1175/1520-0442(2001)013<0198:EOOSEO>2.0.CO;2.

    Article  Google Scholar 

  • Hua, W., S. P. Shen, and H. J. Wang, 2014: Analysis of sampling error uncertainties and trends in maximum and minimum temperatures in China. Adv. Atmos. Sci., 31, 263–272, doi: 10.1007/s00376-013-2316-8.

    Article  Google Scholar 

  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7, 1794–1802, doi: 10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2.

    Article  Google Scholar 

  • Jones, P. D., T. J. Osborn, and K. R. Briffa, 1997: Estimating sampling errors in large-scale temperature averages. J. Climate, 10, 2548–2568, doi: 10.1175/1520-0442(1997)010 <2548:ESEILS>2.0.CO;2.

    Article  Google Scholar 

  • Jones, P. D., T. J. Osborn, K. R. Briffa, et al., 2001: Adjusting for sampling density in grid box land and ocean surface temperature time series. J. Geophys. Res., 106(D4), 3371–3380, doi: 10.1029/2000JD900564.

    Article  Google Scholar 

  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528–531, doi: 10.1038/nature 01675.

    Article  Google Scholar 

  • Karl, T. R., R. W. Knight, and J. R. Christy, 1994: Global and hemispheric temperature trends: Uncertainties related to inadequate spatial sampling. J. Climate, 7, 1144–1163, doi: 10.1175/1520-0442(1994)007<1144:GAHTTU>2.0.CO;2.

    Article  Google Scholar 

  • Kennedy, J. J., N. A. Rayner, R. O. Smith, et al., 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850. 1: Measurement and sampling uncertainties. J. Geophys. Res., 116(D14), D14103, doi: 10.1029/2010JD015218.

    Article  Google Scholar 

  • Kent, E. C., P. G. Challenor, and P. K. Taylor, 1999: A statistical determination of the random observational errors present in voluntary observing ships meteorological reports. J. Atmos. Oceanic Technol., 16, 905–914.

    Article  Google Scholar 

  • Li, C., and Q. Y. Zhang, 2015: An observed connection between wintertime temperature anomalies over Northwest China and weather regime transitions in North Atlantic. J. Meteor. Res., 29, 201–213, doi: 10.1007/s13351-015-4066-2.

    Article  Google Scholar 

  • Li, L., X. D. Zhu, N. S. Qin, et al., 2003: Study on temperature variations and its anomaly patterns over Qinghai–**zang Plateau. Plateau Meteor., 22, 524–530. (in Chinese)

    Google Scholar 

  • Li, L., X. G. Chen, Z. Y. Wang, et al., 2010: Climate change and its regional differences over the Tibetan Plateau. Adv. Climate Change Res., 6, 181–186. (in Chinese)

    Google Scholar 

  • Li, Q. X., W. J. Dong, W. Li, et al., 2010: Assessment of the uncertainties in temperature change in China during the last century. Chinese Sci. Bull., 55, 1974–1982, doi: 10.1007/s11434-010-3209-1.

    Article  Google Scholar 

  • Li, S. H., L. Xu, Y. X. Guo, et al., 2006: Change of annual air temperature over Qinghai–Tibetan Plateau during recent 34 years. J. Desert Res., 26, 27–34. (in Chinese)

    Google Scholar 

  • Liu, G. F., and H. L. Lu, 2010: Basic characteristics of major climatic factors on Qinghai–Tibetan Plateau in recent 45 years. Geogr. Res., 29, 2281–2288. (in Chinese)

    Google Scholar 

  • Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 1729–1742, doi: 10.1002/1097-0088(20001130)20:14<1729: AIDJOC556>3.0.CO;2-Y.

    Article  Google Scholar 

  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The U.S. historical climatology network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 993–1007, doi: 10.1175/2008BAMS2613.1.

    Article  Google Scholar 

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, et al., 2013: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The Had-CRUT4 data set. J. Geophys. Res., 117(D8), D08101, doi: 10.1029/2011JD017187.

    Google Scholar 

  • Niu, T., L. X Chen, and Z. J. Zhou, 2004: The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv. Atmos. Sci., 21, 193–203, doi: 10.1007/BF02915705.

    Article  Google Scholar 

  • Parker, D., and B. Horton, 2005: Uncertainties in central England temperature 1878–2003 and some improvements to the maximum and minimum series. Int. J. Climatol., 25, 1173–1188, doi: 10.1002/joc.1190.

    Article  Google Scholar 

  • Ren, Y. L, Y. J. Shi, J. Wang, et al., 2012: An overview of temperature variations on the Qinghai–Tibetan Plateau in the recent hundred years using UK CRU high resolution grid data. J. Lanzhou Univ (Nat. Sci.), 48, 63–68. (in Chinese)

    Google Scholar 

  • Shen, L. L., L. X. Chen, Q. H. **, et al., 2015: A new circulation index to describe variations in winter temperature in Southwest China. J. Meteor. Res., 29, 228–236, doi: 10.1007/s13351-015-4104-0.

    Article  Google Scholar 

  • Shen, S. S. P., H. Yin, and T. M. Smith, 2007: An estimate of the sampling error variance of the gridded GHCN monthly surface air temperature data. J. Climate, 20, 2321–2331, doi: 10.1175/JCLI4121.1.

    Article  Google Scholar 

  • Shen, S. S. P., C. K. Lee, and J. Lawrimore, 2012: Uncertainties, trends, and hottest and coldest years of U.S. surface air temperature since 1895: An update based on the USHCN V2 TOB data. J. Climate, 25, 4185–4203, doi: 10.1175/JCLI-D-11-00102.1.

    Article  Google Scholar 

  • Smith, T. M., S. S. P. Shen, R. Li, et al., 2013: Estimating monthly precipitation reconstruction uncertainty beginning in 1900. J. Atmos. Oceanic Technol., 30, 1107–1112, doi: 10.1175/JTECH-D-12-00197.1.

    Article  Google Scholar 

  • Wang, B., Q. Bao, B. Hoskins, et al., 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi: 10.1029/2008GL034330.

    Article  Google Scholar 

  • Wang, J. F., R. Haining, and Z. D. Cao, 2010: Sample surveying to estimate the mean of a heterogeneous surface: Reducing the error variance through zoning. Int. J. Geogr. Inf., 24, 523–543, doi: 10.1080/13658810902873512.

    Article  Google Scholar 

  • Wang, J. F., R. Haining, T. J. Liu, et al., 2013a: Sandwich estimation for multi-unit reporting on a stratified heterogeneous surface. Environ. Plann. A, 45, 2515–2534, doi: 10.1068/a44710.

    Article  Google Scholar 

  • Wang, J. F., C. S. Jiang, M. G. Hu, et al., 2013b: Design-based spatial sampling: Theory and implementation. Environ. Modell. Softw., 40, 280–288, doi: 10.1016/j.envsoft.2012.09.015.

    Article  Google Scholar 

  • Wang, J. F., C. D. Xu, M. G. Hu, et al., 2014: A new estimate of the China temperature anomaly series and uncertainty assessment in 1900–2006. J. Geophys. Res., 119, doi: 10.1002/2013JD020542.

    Google Scholar 

  • Williams, C. N., M. J. Menne, and P. W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J. Geophys. Res., 117(D5), doi: 10.1029/2011JD016761.

    Google Scholar 

  • Wu, S. H., Y. H. Yin, D. Zheng, et al., 2005: Climate changes in the Tibetan Plateau during the last three decades. Acta Geograp. Sinica., 60, 3–11. (in Chinese)

    Google Scholar 

  • Yang, K., H. Wu, J. Qin, et al., 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet Change, 112, 79–91, doi: 10.1016/j.gloplacha.2013.12.001.

    Article  Google Scholar 

  • You, Q. L., K. Fraedrich, G. Y. Ren, et al., 2013: Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int. J. Climatol., 33, 1337–1347, doi: 10.1002/joc.3512.

    Article  Google Scholar 

  • Zheng, R., D. L. Li, and Y. C. Jiang, 2015: New characteristics of temperature change over Qinghai–**zang Plateau on the background of global warming. Plateau Meteor., 34, 1531–1539. (in Chinese)

    Google Scholar 

  • Zhou, M. Z., and H. J. Wang, 2015: Potential impact of future climate change on crop yield in northeastern China. Adv. Atmos. Sci., 32, 889–897, doi: 10.1007/s00376-014-4161-9.

    Article  Google Scholar 

  • Zhou, S. W., and R. H. Zhang, 2005: Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibetan ozone depletion. Geophys. Res. Lett., 32, L18705, doi: 10.1029/2005GL023496.

    Google Scholar 

  • Zhou, T. J., and X. L. Chen, 2015: Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback. J. Meteor. Res., 29, 884–895, doi: 10.1007/s13351-015-5036-4.

    Article  Google Scholar 

  • Zhu, W. Q., L. X. Chen, and Z. J. Zhou, 2001: Several characteristics of contemporary climate change in the Tibetan Plateau. Sci. China (Ser. D), 44, 410–420, doi: 10.1007/BF02912013.

    Article  Google Scholar 

  • Zou, H., J. H. Zhu, L. B. Zhou, et al., 2014: Validation and application of reanalysis temperature data over the Tibetan Plateau. J. Meteor. Res., 28, 139–149, doi: 10.1007/s13351-014-3027-5.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their constructive suggestions and comments, which have helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hua.

Additional information

Supported by the National Natural Science Foundation of China (41405069, 91537214, 41275079, 41305077, 41605063, and 41505078), Key Foundation of the Education Department of Sichuan Province (16ZA0203), China Meteorological Administration Special Public Welfare Research Fund (GYHY201506001), and Scientific Research Fund of Chengdu University of Information Technology (KYTZ201517, J201516, and J201518).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, W., Fan, G., Zhang, Y. et al. Trends and uncertainties in surface air temperature over the Tibetan Plateau, 1951–2013. J Meteorol Res 31, 420–430 (2017). https://doi.org/10.1007/s13351-017-6013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6013-x

Key words

Navigation