Log in

Automatic pixel-level bridge crack detection using learning context flux field with convolutional feature fusion

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Surface crack detection for concrete bridge is a practical but challenging task, owing to the inherent large variety of crack images and the complexity of the background. Many recent approaches formulate crack detection as a pixel-level binary classification problem. However, tiny cracks present a low contrast with the surrounding background, which is hard to be found by current methods. In this paper, the CrackFlux is proposed with a learning-based data-driven methods, which detects cracks via the learning context flux field. In precise, a ConvNets is trained to predict the two-dimensional vector field and each pixel is projected onto candidate crack points. The proposed “context flux field” representation has two major superiorities. First of all, it uses the spatial context of the image points to encode the relative position of the crack pixels. Besides, because the context flux is a region-based vector field, it performs better to tackle cracks with extreme widths. To demonstrate the effectiveness of the proposed method, it is compared with recent state-of-the-art crack detection methods on four datasets under the standard evaluation metric. These experiments demonstrate that the proposed method of “the crack detection via context flux field” exceeds the existing methods and build the new baseline for crack detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from thecorresponding author upon request.

References

  1. Eisenbach M, Stricker R, Seichter D, et al (2017) How to get pavement distress detection ready for deep learning? A systematic approach. In: 2017 International Joint Conference on Neural Networks (IJCNN)

  2. Koch C, Georgieva K, Kasireddy V et al (2015) A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv Eng Inform 29(2):196–210. https://doi.org/10.1016/j.aei.2015.01.008

    Article  Google Scholar 

  3. Zhang A, Wang KCP, Li BX et al (2017) Automated pixel-level pavement crack detection on 3d asphalt surfaces using a deep-learning network. Comput-Aided Civ Infrastruct Eng 32(10):805–819. https://doi.org/10.1111/mice.12297

    Article  Google Scholar 

  4. Zhang L, F Yang F, Zhang YD, et al (2016) Road crack detection using deep convolutional neural networK. In: 23rd IEEE International Conference on image processing (ICIP). Phoenix, AZ

  5. Fuentes R (2017),Deeper networks for pavement crack detection. In: Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC). Tribun EU, s.r.o., Brno. pp 479–485

  6. Li G, He S, Ju Y et al (2014) Long-distance precision inspection method for bridge cracks with image processing. Autom Constr 41:83–95. https://doi.org/10.1016/j.autcon.2013.10.021

    Article  Google Scholar 

  7. Qu Z, Bai L, An SQ et al (2016) Lining seam elimination algorithm and surface crack detection in concrete tunnel lining. J Electron Imaging. https://doi.org/10.1117/1.Jei.25.6.063004

    Article  Google Scholar 

  8. Kapela R, Śniatała P, Turkot A, et al (2015) Asphalt surfaced pavement cracks detection based on histograms of oriented gradients. In: 2015 22nd International Conference mixed design of integrated circuits & systems (MIXDES)

  9. Nishikawa T, Yoshida J, Sugiyama T et al (2012) Concrete crack detection by multiple sequential image filtering. Comput-Aided Civ Infrastruct Eng 27(1):29–47. https://doi.org/10.1111/j.1467-8667.2011.00716.x

    Article  Google Scholar 

  10. Adhikari RS, Moselhi O, Bagchi A (2014) Image-based retrieval of concrete crack properties for bridge inspection. Autom Constr 39:180–194. https://doi.org/10.1016/j.autcon.2013.06.011

    Article  Google Scholar 

  11. Liang D, Zhou X-F, Wang S et al (2019) Research on concrete cracks recognition based on dual convolutional neural network. KSCE J Civ Eng 23(7):3066–3074. https://doi.org/10.1007/s12205-019-2030-x

    Article  Google Scholar 

  12. Chen FC, Jahanshahi MR (2018) NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans Industr Electron 65(5):4392–4400. https://doi.org/10.1109/TIE.2017.2764844

    Article  Google Scholar 

  13. Mohan A, Poobal S (2018) Crack detection using image processing: a critical review and analysis. Alex Eng J 57(2):787–798. https://doi.org/10.1016/j.aej.2017.01.020

    Article  Google Scholar 

  14. Wang YK, Xu YC, Tsogkas S, et al (2019) DeepFlux for skeletons in the wild. In: 32nd IEEE/CVF Conference on computer vision and pattern recognition (CVPR). Long Beach, CA

  15. He YC, Kang SH, Alvarez L (2021) Finding the skeleton of 2D shape and contours: implementation of hamilton-Jacobi skeleton. Image Process Line 11:18–36. https://doi.org/10.5201/ipol.2021.296

    Article  MathSciNet  Google Scholar 

  16. Dimitrov, P, Damon JN, Siddiqi K, et al (2003) Flux invariants for shape. In: Conference on computer vision and pattern recognition. Madison, WI

  17. Liu FF, Xu GA, Yang YX, et al (2008) Novel approach to pavement cracking automatic detection based on segment extending. In: International Symposium on Knowledge Acquisition and Modeling. Wuhan, PEOPLES R CHINA

  18. Chanda S, Bu G, Guan H et al (2014) Automatic bridge crack detection—a texture analysis-based approach. In: El Gayar N, Schwenker F, Suen C (eds) Artificial neural networks in pattern recognition. Springer International Publishing, Cham

    Google Scholar 

  19. Medina R, Llamas J, Zalama E, et al (2014) Enhanced automatic detection of road surface cracks by combining 2D/3D image processing techniques. In: 2014 IEEE International Conference on Image Processing (ICIP)

  20. Hadi WJ, Kadhem SM, Abbas AR (2022) Detecting deepfakes with deep learning and gabor filters. Aro Sci J Koya Univ 10(1):18–22. https://doi.org/10.14500/aro.10917

    Article  Google Scholar 

  21. Abdel-Qader I, Abudayyeh O, Kelly ME (2003) Analysis of edge-detection techniques for crack identification in bridges. J Comput Civ Eng 17(4):255–263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)

    Article  Google Scholar 

  22. Ying L, Salari E (2010) Beamlet transform-based technique for pavement crack detection and classification. Comput-Aided Civ Infrastruct Eng 25(8):572–580. https://doi.org/10.1111/j.1467-8667.2010.00674.x

    Article  Google Scholar 

  23. Li G, Zhao X, Du K et al (2017) Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine. Autom Constr 78:51–61. https://doi.org/10.1016/j.autcon.2017.01.019

    Article  Google Scholar 

  24. Amhaz R, Chambon S, Idier J et al (2016) Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection. IEEE Trans Intell Transp Syst 17(10):2718–2729. https://doi.org/10.1109/tits.2015.2477675

    Article  Google Scholar 

  25. Rajeswari R, Devi T, Shalini S (2022) Dysarthric speech recognition using variational mode decomposition and convolutional neural networks. Wireless Pers Commun 122(1):293–307. https://doi.org/10.1007/s11277-021-08899-x

    Article  Google Scholar 

  26. Cheng GT, Zhou YC, Gao S et al (2023) Convolution-enhanced vision transformer network for smoke recognition. Fire Technol. https://doi.org/10.1007/s10694-023-01378-8

    Article  Google Scholar 

  27. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  28. Ghafoor I, Tse PW, Munir N et al (2022) Non-contact detection of railhead defects and their classification by using convolutional neural network. Optik. https://doi.org/10.1016/j.ijleo.2022.168607

    Article  Google Scholar 

  29. Yu Y, Yang Y, Liu K (2021) Edge-aware superpixel segmentation with unsupervised convolutional neural networks. In: 2021 IEEE International Conference on Image Processing (ICIP)

  30. Cha Y-J, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng 32(5):361–378. https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  31. Yang X, Li H, Yu Y et al (2018) Automatic pixel-level crack detection and measurement using fully convolutional network. Comput-Aided Civ Infrastruct Eng 33(12):1090–1109. https://doi.org/10.1111/mice.12412

    Article  Google Scholar 

  32. Li SY, Zhao XF, Zhou GY (2019) Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Comput-Aided Civ Infrastruct Eng 34(7):616–634. https://doi.org/10.1111/mice.12433

    Article  Google Scholar 

  33. Liu ZQ, Cao YW, Wang YZ et al (2019) Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom Constr 104:129–139. https://doi.org/10.1016/j.autcon.2019.04.005

    Article  Google Scholar 

  34. Liu Y, Yao J, Lu X et al (2019) DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338:139–153. https://doi.org/10.1016/j.neucom.2019.01.036

    Article  Google Scholar 

  35. Grompone von Gioi R, Randall G (2022) A brief analysis of the holistically-nested edge detector. Image Process Line 12:369–377. https://doi.org/10.5201/ipol.2022.422

    Article  Google Scholar 

  36. Chu HH, Wang W, Deng L (2022) Tiny-Crack-Net: a multiscale feature fusion network with attention mechanisms for segmentation of tiny cracks. Comput-Aided Civ Infrastruct Eng 37(14):1914–1931. https://doi.org/10.1111/mice.12881

    Article  Google Scholar 

  37. Schouten TE, van den Broek EL (2014) Fast exact Euclidean distance (FEED): a new class of adaptable distance transforms. IEEE Trans Pattern Anal Mach Intell 36(11):2159–2172. https://doi.org/10.1109/tpami.2014.25

    Article  Google Scholar 

  38. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR)

  39. Chen LC, Papandreou G, Kokkinos I et al (2018) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  40. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on learning representations, ICLR 2015, May 7, 2015 - May 9, 2015. San Diego, CA, United states: International Conference on Learning Representations, ICLR

  41. **e SN, Tu ZW (2017) Holistically-nested edge detection. Int J Comput Vision 125(1–3):3–18. https://doi.org/10.1007/s11263-017-1004-z

    Article  MathSciNet  Google Scholar 

  42. Sudre CH, Li WQ, Vercauteren T et al (2017),Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: 3rd MICCAI International Workshop on Deep Learning in Medical Image Analysis (DLMIA)/7th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS). Quebec, CANADA

  43. Jia YQ, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding. In: ACM Conference on Multimedia (MM). Univ Cent Florida, Orlando, FL

  44. Li DQ, Ling H, Kim SW et al (2022) BigDatasetGAN: synthesizing imagenet with pixel-wise annotations. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR). New Orleans, LA

  45. Neubeck A, Gool LV (2006) Efficient Non-maximum suppression. In 18th International Conference on pattern recognition (ICPR'06)

  46. Zheng Y, Wang R, Chen C et al (2022) Fast stability assessment of rock slopes subjected to flexural toppling failure using adaptive moment estimation (Adam) algorithm. Landslides 19(9):2149–2158. https://doi.org/10.1007/s10346-022-01902-x

    Article  Google Scholar 

  47. Yang F, Zhang L, Yu SJ et al (2020) Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans Intell Transp Syst 21(4):1525–1535. https://doi.org/10.1109/tits.2019.2910595

    Article  Google Scholar 

  48. Zou Q, Cao Y, Li QQ et al (2012) Crack Tree: automatic crack detection from pavement images. Pattern Recogn Lett 33(3):227–238. https://doi.org/10.1016/j.patrec.2011.11.004

    Article  Google Scholar 

  49. Shi Y, Cui LM, Qi ZQ et al (2016) Automatic road crack detection using random structured forests. IEEE Trans Intell Transp Syst 17(12):3434–3445. https://doi.org/10.1109/tits.2016.2552248

    Article  Google Scholar 

Download references

Acknowledgements

The research is jointly supported by the Key Research and Development Program of Shaanxi (2023-YBGY-264, 2020ZDLGY09-03), the Key Research and Development Program of Guangxi (GK-AB20159032), and the Science and Technology Bureau of **’an Project (2020KJRC0130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Liu, Y., Shen, D. et al. Automatic pixel-level bridge crack detection using learning context flux field with convolutional feature fusion. J Civil Struct Health Monit 14, 1155–1171 (2024). https://doi.org/10.1007/s13349-024-00775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-024-00775-z

Keywords

Navigation