Log in

Human serum albumin-based drug-free macromolecular therapeutics induce apoptosis in chronic lymphocytic leukemia patient cells by crosslinking of CD20 and/or CD38 receptors

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

This study explores the efficacy of human serum albumin (HSA)-based Drug-Free Macromolecular Therapeutics (DFMT) in treating Chronic Lymphocytic Leukemia (CLL), a prevalent adult leukemia subtype. DFMT, a novel strategy, employs biomimetic crosslinking of CD20 and CD38 receptors on malignant B cells without the need for low molecular weight drugs. Apoptosis is initiated via a two-step process: i) Recognition of a bispecific engager, Fab’ fragment conjugated with morpholino oligonucleotide (Fab’-MORF1), by a cell surface antigen; followed by ii) crosslinking of the MORF1-decorated cells with a multivalent effector, HSA holding multiple copies of complementary MORF2, HSA-(MORF2)x. Herein we evaluated the efficacy of HSA-based DFMT in the treatment of 56 samples isolated from patients diagnosed with CLL. Fab’ fragments from Obinutuzumab (OBN) and Isatuximab (ISA) were employed in the synthesis of anti-CD20 (Fab’OBN-MORF1) and anti-CD38 (Fab’ISA-MORF1) bispecific engagers. The efficacy of DFMT was significantly influenced by the expression levels of CD20 and CD38 receptors. Dual-targeting DFMT strategies (CD20 + CD38) were more effective than single-target approaches, particularly in samples with elevated receptor expression. Pretreatment of patient cells with gemcitabine or ricolinostat markedly increased cell surface CD20 and CD38 expression, respectively. Apoptosis was effectively initiated in 62.5% of CD20-targeted samples and in 42.9% of CD38-targeted samples. Our findings demonstrate DFMT’s potential in personalized CLL therapy. Further research is needed to validate these outcomes in a larger number of patient samples and to explore DFMT’s applicability to other malignancies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available by the authors upon request.

References

  1. Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, O’Brien S, Gribben J, Rai K. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3:16096. https://doi.org/10.1038/nrdp.2016.96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iyer P, Wang L. Emerging therapies in CLL in the era of precision medicine. Cancers. 2023;15(5):1583. https://doi.org/10.3390/cancers15051583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chu TW, Kopeček J. Drug-free macromolecular therapeutics–a new paradigm in polymeric nanomedicines. Biomaterials Sci. 2015;3(7):908–22. https://doi.org/10.1039/C4BM00442F.

    Article  CAS  Google Scholar 

  4. Yang J, Li L, Kopeček J. Biorecognition: a key to drug-free macromolecular therapeutics. Biomaterials. 2019;190–191:11–23. https://doi.org/10.1016/j.biomaterials.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  5. Chu TW, Yang J, Zhang R, Sima M, Kopeček J. Cell surface self-assembly of hybrid nanoconjugates via oligonucleotide hybridization induces apoptosis. ACS Nano. 2014;8(1):719–30. https://doi.org/10.1021/nn4053827.

    Article  CAS  PubMed  Google Scholar 

  6. Chu TW, Kosak KM, Shami PJ, Kopeček J. Drug-free macromolecular therapeutics induce apoptosis of patient chronic lymphocytic leukemia cells. Drug Deliv Transl Res. 2014;4(5–6):389–94. https://doi.org/10.1007/s13346-014-0209-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Li L, Yang J, Clair PM, Glenn MJ, Stephens DM, Radford DC, Kosak KM, Deininger MW, Shami PJ, Kopeček J. Drug-free macromolecular therapeutics induce apoptosis in cells isolated from patients with B cell malignancies with enhanced apoptosis induction by pretreatment with gemcitabine. Nanomedicine: NBM. 2019;16:217–25. https://doi.org/10.1016/j.nano.2018.12.011.

    Article  CAS  Google Scholar 

  8. Chu TW, Zhang R, Yang J, Chao MP, Shami PJ, Kopeček J. A two-step pretargeted nanotherapy for CD20 crosslinking may achieve superior anti-lymphoma efficacy to Rituximab. Theranostics. 2015;5(8):834–46. https://doi.org/10.7150/thno.12040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spada A, Emami J, Tuszynski JA, Lavasanifar A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol Pharm. 2021;18(5):1862–94. https://doi.org/10.1021/acs.molpharmaceut.1c00046.

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Yang J, Soodvilai S, Wang J, Opanasopit P, Kopeček J. Drug-free albumin-triggered sensitization of cancer cells to anticancer drugs. J Control Release. 2019;293:84–93. https://doi.org/10.1016/j.jconrel.2018.11.015.

    Article  CAS  PubMed  Google Scholar 

  11. Gambles MT, Sborov D, Shami P, Yang J, Kopeček J. Obinutuzumab-based drug-free macromolecular therapeutics synergizes with topoisomerase inhibitors. Macromol Biosci. 2023;e2300375. https://doi.org/10.1002/mabi.202300375.

  12. Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release. 2023;358:232–58. https://doi.org/10.1016/j.jconrel.2023.04.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gambles MT, Li J, Wang J, Sborov D, Yang J, Kopeček J. Crosslinking of CD38 receptors triggers apoptosis of malignant B cells. Molecules. 2021;26(15):4658. https://doi.org/10.3390/molecules26154658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gambles MT, Li J, Radford CD, Sborov D, Shami P, Yang J, Kopeček J. Simultaneous crosslinking of CD20 and CD38 receptors by drug-free macromolecular therapeutics enhances B cell apoptosis in vitro and in vivo. J Control Release. 2022;350:584–99. https://doi.org/10.1016/j.jconrel.2022.08.045.

    Article  CAS  PubMed Central  Google Scholar 

  15. Pavlasová G, Mráz M. The regulation and function of CD20: an enigma of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506. https://doi.org/10.3324/haematol.2019.243543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manna A, Aulakh S, Jani P, Ahmed S, Akhtar S, Coignet M, Heckman M, Meghji Z, Bhatia K, Sharma A, Sher T, Alegria V, Malavasi F, Chini EN, Chanan-Khan A, Ailawadhi S, Paulus A. Targeting CD38 enhances the antileukemic activity of ibrutinib in chronic lymphocytic leukemia. Clin Cancer Res. 2019;25(13):3974–85. https://doi.org/10.1158/1078-0432.CCR-18-3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marinov AD, Wang H, Bastacky SI, van Puijenbroek E, Schindler T, Speziale D, Perro M, Klein C, Nickerson KM, Shlomchik MJ. The type II anti-CD20 antibody obinutuzumab (GA101) is more effective than rituximab at depleting B cells and treating disease in a murine lupus model. Arthritis Rheumatol. 2021;73(5):826–36. https://doi.org/10.1002/art.41608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu C, Song Z, Wang A, Srinivasan S, Yang G, Greco R, Theilhaber J, Shehu E, Wu L, Yang ZY, Passe-Coutrin W, Fournier A, Tai YT, Anderson KC, Wiederschain D, Bahjat K, Adrián FJ, Chiron M. Isatuximab acts through Fc-dependent, independent, and direct pathways to kill multiple myeloma cells. Front Immunol. 2020;11:1771. https://doi.org/10.3389/fimmu.2020.01771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi K, Nagasaki E, Kan S, Ito M, Kamata Y, Homma S, Aiba K. Gemcitabine enhances rituximab-mediated complement-dependent cytotoxicity to B cell lymphoma by CD20 upregulation. Cancer Sci. 2016;107(5):682–9. https://doi.org/10.1111/cas.12918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li L, Yang J, Wang J, Kopeček J. Amplification of CD20 cross-linking in rituximab-resistant B-lymphoma cells enhances apoptosis induction by drug-free macromolecular therapeutics. ACS Nano. 2018;12(4):3658–70. https://doi.org/10.1021/acsnano.8b00797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. García-Guerrero E, Götz R, Doose S, Sauer M, Rodríguez-Gil A, Nerreter T, Kortüm KM, Pérez-Simón JA, Einsele H, Hudecek M, Danhof S. Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab. Leukemia. 2021;35(1):201–14. https://doi.org/10.1038/s41375-020-0840-y.

    Article  CAS  PubMed  Google Scholar 

  22. Khalid K, Padda J, Syam M, Moosa A, Kakani V, Sanka S, Zubair U, Padda S, Cooper AC, Jean-Charles G. 13q14 deletion and its effect on prognosis of chronic lymphocytic leukemia. Cureus. 2021;13(8):e16839. https://doi.org/10.7759/cureus.16839.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Degheidy HA, Gadalla SM, Farooqui MZ, Abbasi F, Arthur DC, Bauer SR, Wilson WH, Wiestner A, Stetler-Stevenson MA, Marti GE. Bcl-2 level as a biomarker for 13q14 deletion in CLL. Cytometry B Clin Cytom. 2013;84(4):237–47. https://doi.org/10.1002/cyto.b.21090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. BioMed Res Int. 2014;435983. https://doi.org/10.1155/2014/435983.

Download references

Acknowledgements

The authors thank core facilities, Flow Cytometry and Confocal Fluorescence Microscopy, for support.

Funding

The research was supported by NIH grant R01 CA246716 from the National Cancer Institute (to JK). We acknowledge support of funds in conjunction with grant P30 CS042014 awarded to Huntsman Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JK, JY, JL; methodology, JL, MTG, BJ, JAW, NJC; validation JK, JL, JY; investigation, JL, MTG, BJ, JAW; data analysis, JL, JK, JY, PJS; writing– original draft preparation, JL, JK; writing– review and editing, JK, JL, JY, PJS, NJC; funding acquisition, JK, NJC; supervision, JK, JY, NJC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jiyuan Yang or **dřich Kopeček.

Ethics declarations

Ethics approval and consent to participate

All patients gave informed consent through a research protocol by the University of Utah Institutional Review Board (IRB# 45880).

Consent for publication

All authors approve the publication.

Competing interests

J.Y. and J.K. are co-inventors on US patents assigned to the University of Utah related to this work. Otherwise, the authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gambles, M.T., Jones, B. et al. Human serum albumin-based drug-free macromolecular therapeutics induce apoptosis in chronic lymphocytic leukemia patient cells by crosslinking of CD20 and/or CD38 receptors. Drug Deliv. and Transl. Res. 14, 2203–2215 (2024). https://doi.org/10.1007/s13346-024-01629-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-024-01629-3

Keywords

Navigation