Log in

Enhanced antichemobrain activity of amino acid assisted ferulic acid solid dispersion in adult zebrafish (Danio rerio)

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Chemotherapy-induced cognitive impairment (CICI), also known as “chemobrain,” is a common side effect of breast cancer therapy which causes oxidative stress and generation of reactive oxygen species (ROS). Ferulic acid (FA), a natural polyphenol, belongs to BCS class II is confirmed to have nootropic, neuroprotective and antioxidant effects. Here, we have developed FA solid dispersion (SD) in order to enhance its therapeutic potential against chemobrain. An amorphous ferulic acid loaded leucin solid dispersion (FA-Leu SD) was prepared by utilizing amino acid through spray-drying technique. The solid-state characterization was carried out via Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). Additionally, in-vitro release studies and antioxidant assay were also performed along with in-vivo locomotor, biochemical and histopathological analysis. The physical properties showed that FA-Leu SD so formed exhibited spherical, irregular surface hollow cavity of along with broad melting endotherm as observed from FE-SEM and DSC results. The XRD spectra demonstrated absence of sharp and intense peaks in FA-Leu SD which evidenced for complete encapsulation of drug into carrier. Moreover, in-vitro drug release studies over a period of 5 h in PBS (pH 7.4) displayed a significant enhanced release in the first hr (68. 49 ± 5.39%) and in-vitro DPPH assay displayed greater antioxidant potential of FA in FA-Leu SD. Furthermore, the in-vivo behavioral findings of FA-Leu SD (equivalent to 150 mg/kg of free FA) exhibited positive results accompanied by in-vivo biochemical and molecular TNF-α showed a significant difference (p < 0.001) vis-à-vis DOX treated group upon DOX + FA-Leu SD. Additionally, histopathological analysis revealed neuroprotective effects of FA-Leu SD together with declined oxidative stress due to antioxidant potential of FA which was induced by anticancer drug doxorubicin (DOX). Overall, the above findings concluded that spray-dried FA-Leu SD could be useful for the treatment of chemotherapy induced cognitive impairment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data will be available on request.

Abbreviations

FA:

Ferulic Acid

Leu:

Leucine

PM:

Physical mixture

FA-Leu SD:

Ferulic acid loaded solid dispersion

UV:

Ultraviolet spectrophotometer

FTIR:

Fourier transform infrared spectrophotometer

DSC:

Differential scanning colorimeter

PXRD:

Powder X-ray diffraction

FESEM:

Field emission scanning electron microscope

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

SD:

Solid dispersion

CICI:

Chemotherapy-induced cognitive impairment

DOX:

Doxorubicin

ATChI:

Acetylthiocholine iodide

ROS:

Reactive oxygen species

FZ:

Favorable zone

UFZ:

Unfavourable zone

LZ:

Light zone

DZ:

Dark zone

LDT:

Light and Dark test

TSLZ:

Time spent in light zone

TSDZ:

Time spent in dark zone

OF:

Open field

OFT:

Open field test

TSFZ:

Time spent in favorable zone

TSUZ:

Time spent in unfavourable zone

LPO:

Lipid peroxidation

AChEs:

Acetylcholinesterase

GSH:

Glutathione

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor α

Eq.:

Equivalent

References

  1. Horowitz TS, Suls J, Treviñ M. A call for a neuroscience approach to cancer-related cognitive impairment. Trends Neurosci. 2018;41(8):493–6.

    Article  CAS  PubMed  Google Scholar 

  2. Shi D-D, Dong CM, Ho LC, Lam C, Zhou X-D, Wu EX, et al. Resveratrol, a natural polyphenol, prevents chemotherapy-induced cognitive impairment: Involvement of cytokine modulation and neuroprotection. Neurobiol Dis. 2018;114:164–73.

    Article  CAS  PubMed  Google Scholar 

  3. Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, et al. Cancer statistics, 2020: report from national cancer registry programme, India. JCO Glob Oncol. 2020;6:1063–75.

    Article  PubMed  Google Scholar 

  4. Sahu K, Langeh U, Singh C, Singh A. Crosstalk between anticancer drugs and mitochondrial functions. Curr Res Pharmacol Drug Discov. 2021;2:100047.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, et al. Adriamycin-induced TNF-α-mediated central nervous system toxicity. Neurobiol Dis. 2006;23(1):127–39.

    Article  CAS  PubMed  Google Scholar 

  6. Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer. 2008;8(11):887–99.

    Article  CAS  PubMed  Google Scholar 

  7. Rubinstein AL. Zebrafish: from disease modeling to drug discovery. Curr Opinion Drug Discov Dev. 2003;6(2):218–23.

    CAS  Google Scholar 

  8. Pan H, Zhang J, Wang Y, Cui K, Cao Y, Wang L, et al. Linarin improves the dyskinesia recovery in Alzheimer’s disease zebrafish by inhibiting the acetylcholinesterase activity. Life Sci. 2019;222:112–6.

    Article  CAS  PubMed  Google Scholar 

  9. Khotimah H, Ali M, Sumitro SB, Widodo MA. Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson’s model. Asian Pac J Trop Biomed. 2015;5(11):948–54.

    Article  CAS  Google Scholar 

  10. Singh S, Sahu K, Kapil L, Singh C, Singh A. Quercetin ameliorates lipopolysaccharide-induced neuroinflammation and oxidative stress in adult zebrafish. Mol Biol Rep. 2022;49(4):3247–58.

    Article  CAS  PubMed  Google Scholar 

  11. Arora S, Kumar V, Kapil L, Agrawal AK, Singh A, Singh C. Piperine loaded metal organic frameworks reverse doxorubicin induced chemobrain in adult zebrafish. J Control Release. 2023;355:259–72.

    Article  CAS  PubMed  Google Scholar 

  12. Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 2011;3(4):793–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y-H, Zeng KW. Natural products as a crucial source of anti-inflammatory drugs: recent trends and advancements. Tradit Med Res. 2019;4(5):257–68.

    Article  Google Scholar 

  14. Zeng M, Yang L, He D, Li Y, Shi M, Zhang JJDMR. Metabolic pathways and pharmacokinetics of natural medicines with low permeability. Drug Metab Rev. 2017;49(4):464–76.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu C-M, Yu S-C, Tsai F-J, Tsai YJC, Biointerfaces SB. Characterization of in vitro and in vivo bioactivity of a ferulic acid-2-Hydroxypropyl-β-cyclodextrin inclusion complex. Colloids Surf B Biointerfaces. 2019;180:68–74.

    Article  CAS  PubMed  Google Scholar 

  16. Shukla D, Nandi NK, Singh B, Singh A, Kumar B, Narang RK, et al. Ferulic acid-loaded drug delivery systems for biomedical applications. J Drug Del Sci Technol. 2022;75:103621.

    Article  CAS  Google Scholar 

  17. Bersanetti PA, Escobar VH, Nogueira RF, dos Santos OF, Schor P, et al. Enzymatically obtaining hydrogels of PVA crosslinked with ferulic acid in the presence of laccase for biomedical applications. Eur Polymer J. 2019;112:610–8.

    Article  CAS  Google Scholar 

  18. Grasso R, Dell’Albani P, Carbone C, Spatuzza M, Bonfanti R, Sposito G, et al. Synergic pro-apoptotic effects of Ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and Delayed Luminescence studies. Sci Rep. 2020;10(1):4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anselmi C, Centini M, Ricci M, Buonocore A, Granata P, Tsuno T, et al. Analytical characterization of a ferulic acid/γ-cyclodextrin inclusion complex. J Pharm Biomed Anal. 2006;40(4):875–81.

    Article  CAS  PubMed  Google Scholar 

  20. Singh C, Bhatt TD, Gill MS, Suresh S. Novel rifampicin–phospholipid complex for tubercular therapy: synthesis, physicochemical characterization and in-vivo evaluation. Int J Pharm. 2014;460(1–2):220–7.

    Article  CAS  PubMed  Google Scholar 

  21. Picone P, Bondi ML, Picone P, Bondi ML, Montana G, Bruno A, et al. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radical Res. 2009;43(11):1133–45.

    Article  CAS  Google Scholar 

  22. Rezaeiroshan A, Saeedi M, Morteza-Semnani K, Akbari J, et al. Development of trans-Ferulic acid niosome: an optimization and an in-vivo study. J Drug Deliv Sci Technol. 2020;59:101854.

    Article  CAS  Google Scholar 

  23. Júnior JV, Dos Santos JA, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, et al. A new ferulic acid–nicotinamide cocrystal with improved solubility and dissolution performance. J Pharmaceut Sci. 2020;109(3):1330–7.

    Article  Google Scholar 

  24. Rotthäuser B, Kraus G, Schmidt PC. Optimization of an effervescent tablet formulation containing spray dried L-leucine and polyethylene glycol 6000 as lubricants using a central composite design. Eur J Pharmaceut Biopharmaceut. 1998;46(1):85–94.

    Article  Google Scholar 

  25. Sou T, Kaminskas LM, Nguyen T-H, Carlberg R, McIntosh MP,Morton DAJEJoP, et al. The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules. Eur J Pharmaceut Biopharmaceut. 2013;83(2):234–43.

    Article  CAS  Google Scholar 

  26. Erukainure OL, Atolani O, Banerjee P, Abel R, Pooe OJ, Adeyemi OS, et al. Oxidative testicular injury: effect of l-leucine on redox, cholinergic and purinergic dysfunctions, and dysregulated metabolic pathways. Amino Acids. 2021;53:359–80.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Zhou Y, Wang G, Zhao Z, Jiang Z, Cui Y, et al. Co-spray-dried poly-L-lysine with L-leucine as dry powder inhalations for the treatment of pulmonary infection: Moisture-resistance and desirable aerosolization performance. Int J Pharmaceut. 2022;624:122011.

    Article  CAS  Google Scholar 

  28. **a Xng, Tan Z, Fan Y, Hu Y, Deng J. Preparation and evaluation of a novel solid dispersion using leucine as carrier. J Pharmacy Pharmacol. 2020;72(2):175–84.

    Article  CAS  Google Scholar 

  29. Bairagi U, Mittal P, Singh J, Mishra BJ. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm. 2018;44(11):1783–96.

    Article  CAS  PubMed  Google Scholar 

  30. D’Souza S. A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms. Adv Pharmaceut. 2014;2014:1–12.

    Google Scholar 

  31. Maurya DK, Devasagayam TP. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem Toxicol. 2010;48(12):3369–73.

    Article  CAS  PubMed  Google Scholar 

  32. Chowdhury S, Ghosh S, Das AK, et al. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol. 2019;10:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mhillaj E, Catino S, Miceli FM, Santangelo R, Trabace L, Cuomo V, et al. Ferulic acid improves cognitive skills through the activation of the heme oxygenase system in the rat. Mol Neurobiol. 2018;55:905–16.

    Article  CAS  PubMed  Google Scholar 

  34. Alharbi I, Alharbi H, Almogbel Y, Alalwan A, et al. Effect of metformin on doxorubicin-induced memory dysfunction. Brain Sci. 2020;10(3):152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khadrawy YA, Hosny EN, Mohammed HS. Protective effect of nanocurcumin against neurotoxicity induced by doxorubicin in rat’s brain. Neurotoxicology. 2021;85:1–9.

    Article  CAS  PubMed  Google Scholar 

  36. Stewart A, Cachat JM, Suciu C, Hart PC, Gaikwad S, Utterback E, et al. Intraperitoneal injection as a method of psychotropic drug delivery in adult zebrafish. Zebrafish Neurobehavioral Protocols. 2011;51:169–79.

    Article  CAS  Google Scholar 

  37. Kim Y-H, Lee KS, Park AR, et al. Adding preferred color to a conventional reward method improves the memory of zebrafish in the T-maze behavior model. Animal Cells Syst. 2017;21(6):374–81.

    Article  Google Scholar 

  38. Sataa NSAM, Bakar NA, Hodin NAS, Ramlan NF, Ibrahim WNW. Behavioral Responses of Javanese Medaka (Oryzias Javanicus) Versus Zebrafish (Danio Rerio) in Open Field Test. 2020. https://doi.org/10.21203/rs.3.rs-50649/v1.

  39. Dubey S, Ganeshpurkar A, Bansal D, et al. Protective effect of rutin on impairment of cognitive functions of due to antiepileptic drugs on zebrafish model. Indian J Pharmacol. 2015;47(1):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta T, Mullins MC. Dissection of organs from the adult zebrafish. JoVE. 2010;37:e1717.

    Google Scholar 

  41. Itzhaki RF, Gill DJ. A micro-biuret method for estimating proteins. Analyt Biochem. 1964;9(4):401–10.

    Article  CAS  PubMed  Google Scholar 

  42. Wills EJ. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966;99(3):667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ellman GL, Courtney KD, Andres V Jr, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  44. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  45. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  46. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analyt Biochem. 1977;83(2):346–56.

    Article  CAS  PubMed  Google Scholar 

  47. Singh A, Kumar AJ. Microglial inhibitory mechanism of coenzyme Q10 against Aβ (1–42) induced cognitive dysfunctions: possible behavioral, biochemical, cellular, and histopathological alterations. Front Pharmacol. 2015;6:268.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Celebioglu A, Uyar TJ. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. Int J Pharmaceut. 2020;584:119395.

    Article  CAS  Google Scholar 

  49. Stepanian SG, Ivanov AY, Adamowicz LJCP. Conformational composition of neutral leucine. Matrix isolation infrared and ab initio study. Chem Phys. 2013;423:20–9.

    Article  CAS  Google Scholar 

  50. Wang J, Cao Y, Sun B, Wang CJ. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 2011;124(3):1069–75.

    Article  CAS  Google Scholar 

  51. Sharif N, Golmakani M-T, Niakousari M, Hosseini SM, Ghorani B, Lopez-Rubio A. Active food packaging coatings based on hybrid electrospun gliadin nanofibers containing ferulic acid/hydroxypropyl-beta-cyclodextrin inclusion complexes. Nanomaterials. 2018;8(11):919.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lan Y, Xu M, Ohm J-B, Chen B, et al. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem. 2019;278:665–73.

    Article  CAS  PubMed  Google Scholar 

  53. Sibum I, Hagedoorn P, Kluitman MP, Kloezen M, Frijlink HW, Grasmeijer FJP. Dispersibility and storage stability optimization of high dose isoniazid dry powder inhalation formulations with L-leucine or trileucine. Pharmaceutics. 2019;12(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Eide S, Feng ZP. Doxorubicin chemotherapy-induced “chemo-brain”: Meta-analysis. Eur J Pharmacol. 2020;881:173078.

    Article  CAS  PubMed  Google Scholar 

  55. Allen BD, Apodaca LA, Syage AR, Markarian M, Baddour AAD, Minasyan H, et al. Attenuation of neuroinflammation reverses Adriamycin-induced cognitive impairments. Acta Neuropathol Commun. 2019;7(1):1–15.

    Article  CAS  Google Scholar 

  56. Lira FS, Esteves AM, Pimentel GD, Rosa JC, Frank MK, Mariano MO, et al. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats. Sleep Sci. 2016;9(3):232–5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Merzoug S, Toumi ML, Tahraoui AJ. Tahraoui AJN-SsaopQuercetin mitigates Adriamycin-induced anxiety-and depression-like behaviors, immune dysfunction, and brain oxidative stress in rats. Naunyn-Schmiedeb Arch Pharmacol. 2014;387:921–33.

    Article  CAS  Google Scholar 

  58. Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, et al. Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res. 2005;39(11):1147–54.

    Article  CAS  PubMed  Google Scholar 

  59. Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr. 2007;40(2):92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ongnok B, Khuan**g T, Chunchai T, Pantiya P, Kerdphoo S, Arunsak B, et al. Donepezil protects against doxorubicin-induced chemobrain in rats via attenuation of inflammation and oxidative stress without interfering with doxorubicin efficacy. Neurotherapeutics. 2021;18:2107–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, et al. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: N impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol. 2018;55:5727–40.

    Article  CAS  PubMed  Google Scholar 

  62. Ramalingayya GV, Sonawane V, Cheruku SP, Kishore A, Nayak PG, Kumar N, et al. Insulin protects against brain oxidative stress with an apparent effect on episodic memory in doxorubicin-induced cognitive dysfunction in wistar rats. J Environ Pathol Toxicol Oncol. 2017;36(2):121–30.

    Article  PubMed  Google Scholar 

  63. Hayslip J, Dressler EV, Weiss H, Taylor TJ, Chambers M, Noel T, et al. Plasma TNF-α and soluble TNF receptor levels after doxorubicin with or without co-administration of mesna—a randomized, cross-over clinical study. Plos One. 2015;10(4):e0124988.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DS duly acknowledges Sanchit Arora, Pharmaceutics Department, DPSRU, New Delhi for rendering help to finalize the revised manuscript. CS is thankful to the Dr. Rajendra Kumar, School of Medicine, Johns Hopkins University, Baltimore, MD, United States for hel** to address the comments. The authors acknowledge generous support of ISF College of Pharmacy and IK Gujral Punjab Technical University, Kapurthala for providing appropriate facilities and instrumentation during the study. The authors would like to thank Punjab University, Chandigarh for providing the PXRD and FE-SEM instrumentation facilities; ISF College of Pharmacy, Moga for providing the instrumentation facilities for UV, FTIR and DSC studies and for performing in-vivo studies on zebrafish. CS duly acknowledges the Science and Engineering Research Board (SERB, GoI) for providing the necessary equipment (spray dryer) to develop the novel formulation under the project EEQ/2020/000616.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DS: Performed experiments and written the manuscript. SK: Performed in vivo studies. AS: Planned and supervised in vivo studies. RKN and CS: Designed the project and Supervision.

Corresponding authors

Correspondence to Arti Singh, Raj Kumar Narang or Charan Singh.

Ethics declarations

Ethical statement

Ethics approval and consent to participate: The experimental design and protocol was approved by the Institutional Biosafety Committee (Approval No. ISFCP/IBSC/M1/2021/16) and conducted according to the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPSCEA) guidelines for the rational use and care of experimental animals. No human subjects were involved in this work.

Consent for publication

Yes.

Competing interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2166 KB)

Supplementary file2 (MP4 13257 KB)

Supplementary file3 (MP4 12605 KB)

Supplementary file4 (MP4 13660 KB)

Supplementary file5 (MP4 13290 KB)

Supplementary file6 (MP4 5899 KB)

Supplementary file7 (MP4 5280 KB)

Supplementary file8 (MP4 5240 KB)

Supplementary file9 (MP4 9764 KB)

Supplementary file10 (MP4 7309 KB)

Supplementary file11 (MP4 12061 KB)

Supplementary file12 (MP4 12037 KB)

Supplementary file13 (MP4 8675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, D., Kaur, S., Singh, A. et al. Enhanced antichemobrain activity of amino acid assisted ferulic acid solid dispersion in adult zebrafish (Danio rerio). Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01546-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01546-5

Keywords

Navigation