Log in

Metal-polyphenol microgels for oral delivery of puerarin to alleviate the onset of diabetes

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Puerarin (Pue) is a naturally bioactive compound with many potential functions in regulating blood glucose and lipid metabolism. However, the low bioavailability and rapid elimination in vivo limit the application of Pue in diabetic treatment. Here, we developed a metal-polyphenol-functionalized microgel to effectively deliver Pue in vivo and eventually alleviate the onset of diabetes. Pue was initially encapsulated in alginate beads through electrospray technology, and further immersed in Fe3+ and tannic acid solution from tannic acid (TA)–iron (Fe) coatings (TF). These constructed Pue@SA-TF microgels exhibited uniform spheres with an average size of 367.89 ± 18.74 µm and high encapsulation efficiency of Pue with 61.16 ± 1.39%. In vivo experiments proved that compared with free Pue and microgels without TF coatings, the biological distribution of Pue@SA-TF microgels specifically accumulated in the small intestine, prolonged the retention time of Pue, and achieved a high effectiveness in vivo. Anti-diabetic experimental results showed that Pue@SA-TF microgels significantly improved the levels of blood glucose, blood lipid, and oxidative stress in diabetic mice. Meanwhile, histopathological observations indicated that Pue@SA-TF microgels could significantly alleviate the damage to the liver, kidney, and pancreas in diabetic mice. Our study provided an effective strategy for oral delivery of Pue and achieved high anti-diabetic efficacy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Arya A, Jamil Al-Obaidi M, Shahid N, Bin Noordin M, Looi C, Wong W, et al. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: a mechanistic study. Food Chem Toxicol. 2014;71:183–96. https://doi.org/10.1016/j.fct.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  2. Liu M, Song X, Zhang J, Zhang C, Gao Z, Li S, et al. Protective effects on liver, kidney and pancreas of enzymatic-and acidic-hydrolysis of polysaccharides by spent mushroom compost (Hypsizigus marmoreus). Sci Rep-UK. 2017;7(1):43212. https://doi.org/10.1038/srep43212.

    Article  CAS  Google Scholar 

  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan B, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pr. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.

  4. Fan M, Zhang X, Zhao Y, Zhi J, Xu W, Yang Y, et al. Mn (II)-mediated self-assembly of tea polysaccharide nanoparticles and their functional role in mice with type 2 diabetes. ACS Appl Mater Interfaces. 2022;14(27):30607–17. https://doi.org/10.1021/acsami.2c07488.

    Article  CAS  PubMed  Google Scholar 

  5. Russell-Jones D, Khan R. Insulin-associated weight gain in diabetes–causes, effects and co** strategies. Diabetes Obes Metab. 2007;9(6):799–812. https://doi.org/10.1111/j.1463-1326.2006.00686.x.

    Article  CAS  PubMed  Google Scholar 

  6. Madić V, Petrović A, Jušković M, Jugović D, Djordjević L, Stojanović G, et al. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J Ethnopharmacol. 2021;265:113210. https://doi.org/10.1016/j.jep.2020.113210.

  7. He M, Yu P, Hu Y, Zhang J, He M, Nie C, et al. Erythrocyte-membrane-enveloped biomineralized metal–organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Appl Mater Interfaces. 2021;13(17):19648–59. https://doi.org/10.1021/acsami.1c01943.

    Article  CAS  PubMed  Google Scholar 

  8. Marton L, Pescinini-e-Salzedas L, Camargo M, Barbalho S, Haber J, Sinatora R, et al. The effects of curcumin on diabetes mellitus: a systematic review. Front Endocrinol. 2021;12:669448. https://doi.org/10.3389/fendo.2021.669448.

  9. Öztürk E, Arslan A, Yerer M, Bishayee A. Resveratrol and diabetes: a critical review of clinical studies. Biomed Pharmacother. 2017;95:230–4. https://doi.org/10.1016/j.biopha.2017.08.070.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Liu H, Zheng M, Yang Y, Ren H, Kong Y, et al. Berberine slows the progression of prediabetes to diabetes in zucker diabetic fatty rats by enhancing intestinal secretion of glucagon-like peptide-2 and improving the gut microbiota. Front Endocrinol. 2021;12:609134. https://doi.org/10.3389/fendo.2021.609134.

  11. Noh J, Yang H, Jun M, Lee B. Puerarin attenuates obesity-induced inflammation and dyslipidemia by regulating macrophages and TNF-Alpha in obese mice. biomedicine. 2022;10(1):175. https://doi.org/10.3390/biomedicines10010175.

  12. Chen X, Yu J, Shi J. Management of diabetes mellitus with puerarin, a natural isoflavone from pueraria lobata. Am J Chinese Med. 2018;46(8):1771–89. https://doi.org/10.1142/s0192415x185.

    Article  CAS  Google Scholar 

  13. Deng X, Zhang H, Wang G, Xu D, Zhang W, Wang Q, et al. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. Int J Pharmaceut. 2019;570(C):118644. https://doi.org/10.1016/j.ijpharm.2019.118644.

  14. Bohr A, Kristensen J, Stride E, Dyas M, Edirisinghe M. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int J Pharmaceut. 2011;412(1):59–67. https://doi.org/10.1016/j.ijpharm.2011.04.005.

    Article  CAS  Google Scholar 

  15. Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharmaceut. 2006;323(1):34–42. https://doi.org/10.1016/j.ijpharm.2006.05.054.

    Article  CAS  Google Scholar 

  16. Wang Q, Wang G, Zhou J, Gao L, Cui Y. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharmaceut. 2016;515(1–2):176–85. https://doi.org/10.1016/j.ijpharm.2016.10.002.

    Article  CAS  Google Scholar 

  17. Bi Y, Lin Z, Deng S. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mat Sci Eng C. 2019;100:576–83. https://doi.org/10.1016/j.msec.2019.03.040.

    Article  CAS  Google Scholar 

  18. Sheng Y, Gao J, Yin Z, Kang J, Kong Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohyd Polym. 2021;269:118325. https://doi.org/10.1016/j.carbpol.2021.118325.

  19. Hou J, Gao L, Meng F, Cui Y. Mucoadhesive microparticles for gastroretentive delivery: preparation, biodistribution and targeting evaluation. Mar Drugs. 2014;12(12):5764–87. https://doi.org/10.3390/md12125764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Long Y, **ao L, Cao Q, Shi X, Wang Y. Efficient incorporation of diverse components into metal organic frameworks via metal phenolic networks. Chem Commun. 2017;53(78):10831–4. https://doi.org/10.1039/C7CC05710E.

    Article  CAS  Google Scholar 

  21. Bartzoka E, Lange H, Poce G, Crestini C. Stimuli-responsive tannin–FeIII hybrid microcapsules demonstrated by the active release of an anti-tuberculosis agent. Chemsuschem. 2018;11(22):3975–91. https://doi.org/10.1002/cssc.201801546.

    Article  CAS  PubMed  Google Scholar 

  22. Kunyanga C, Imungi J, Okoth M, Momanyi C, Biesalski H, Vadivel V. Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from kenya. J Food Sci. 2011;76(4):C560–7. https://doi.org/10.1111/j.1750-3841.2011.02116.x.

    Article  CAS  PubMed  Google Scholar 

  23. Guo J, ** Y, Ejima H, Alt K, Meissner M, Richardson J, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed Engl. 2014;53(22):5546–51. https://doi.org/10.1002/anie.201311136.

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Cho H, Choi J, Kim D, Hong D, Park J, et al. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid–FeIII complex. Nanoscale. 2015;7(45):18918–22. https://doi.org/10.1039/C5NR05573C.

    Article  CAS  PubMed  Google Scholar 

  25. Ejima H, Richardson J, Caruso F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today. 2017;12:136–48. https://doi.org/10.1016/j.nantod.2016.12.012.

    Article  CAS  Google Scholar 

  26. Kim B, Han S, Lee K, Choi I. Biphasic supramolecular self-assembly of ferric ions and tannic acid across interfaces for nanofilm formation. Adv Mater. 2017;29(28):1700784. https://doi.org/10.1002/adma.201700784.

    Article  CAS  Google Scholar 

  27. Ejima H, Richardson J, Liang K, Best J, van Koeverden M, Such G, et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science. 2013;341(6142):154–7. https://doi.org/10.1126/science.1237265.

    Article  CAS  PubMed  Google Scholar 

  28. Regmi S, Pathak S, Nepal M, Shrestha P, Park J, Kim J, et al. Inflammation-triggered local drug release ameliorates colitis by inhibiting dendritic cell migration and Th1/Th17 differentiation. J Control Release. 2019;316:138–49. https://doi.org/10.1016/j.jconrel.2019.11.001.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Gu H, Zhang H, **an J, Li J, Fu C, et al. Oral core–shell nanoparticles embedded in hydrogel microspheres for the efficient site-specific delivery of magnolol and enhanced antiulcerative colitis therapy. ACS Appl Mater Interfaces. 2021;13(29):33948–61. https://doi.org/10.1021/acsami.1c09804.

    Article  CAS  PubMed  Google Scholar 

  30. Halder M, Bhatia Y, Singh Y. Self-assembled di- and tripeptide gels for the passive entrapment and pH-responsive, sustained release of an antidiabetic drug, glimepiride. Biomater Sci-UK. 2022;10(9):2248–62. https://doi.org/10.1039/d2bm00344a.

    Article  CAS  Google Scholar 

  31. Rodríguez-Rodríguez R, Velasquillo-Martínez C, Knauth P, López Z, Moreno-Valtierra M, Bravo-Madrigal J, et al. Sterilized chitosan-based composite hydrogels: physicochemical characterization and in vitro cytotoxicity. J Biomed Mater Res A. 2020;108(1):81–93. https://doi.org/10.1002/jbm.a.36794.

    Article  CAS  PubMed  Google Scholar 

  32. Tekula S, Khurana A, Anchi P, Godugu C. Withaferin-A attenuates multiple low doses of Streptozotocin (MLD-STZ) induced type 1 diabetes. Biomed Pharmacother. 2018;106:1428–40. https://doi.org/10.1016/j.biopha.2018.07.090.

    Article  CAS  PubMed  Google Scholar 

  33. Fan L, Niu H, Zhao L, Yao R, He X, Lu B, et al. Purendan alleviates non-alcoholic fatty liver disease in aged type 2 diabetic rats via regulating mTOR/S6K1/SREBP-1c signaling pathway. Biomed Pharmacother. 2022;148:112697. https://doi.org/10.1016/j.biopha.2022.112697.

  34. Lee H, Nguyen D, Kim N, Han S, Hong Y, Yun G, et al. Enzyme-mediated kinetic control of Fe3+–tannic acid complexation for interface engineering. ACS Appl Mater Interfaces. 2021;13(44):52385–94. https://doi.org/10.1021/acsami.1c15503.

    Article  CAS  PubMed  Google Scholar 

  35. Dong J, Chen W, Feng J, Liu X, Xu Y, Wang C, et al. Facile, smart, and degradable metal–organic framework nanopesticides gated with FeIII-tannic acid networks in response to seven biological and environmental stimuli. ACS Appl Mater Interfaces. 2021;13(16):19507–20. https://doi.org/10.1021/acsami.1c04118.

    Article  CAS  PubMed  Google Scholar 

  36. Kozlovskaya V, Kharlampieva E, Drachuk I, Cheng D, Tsukruk VV. Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter. 2010;6(15):3596–608. https://doi.org/10.1039/B927369G.

    Article  CAS  Google Scholar 

  37. Li Y, Wang C, Luan Y, Liu W, Chen T, Liu P, et al. Preparation of pH-responsive cellulose nanofibril/sodium alginate based hydrogels for drug release. J Appl Polym Sci. 2022;139(7):51647. https://doi.org/10.1002/app.51647.

    Article  CAS  Google Scholar 

  38. Chen J, Li J, Zhou J, Lin Z, Cavalieri F, Czuba-Wojnilowicz E, et al. Metal–phenolic coatings as a platform to trigger endosomal escape of nanoparticles. ACS Nano. 2019;13(10):11653–64. https://doi.org/10.1021/acsnano.9b05521.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Peng S, Hong S, Chen Q, Zeng X, Rong L, et al. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials. 2020;245:119986. https://doi.org/10.1016/j.biomaterials.2020.119986.

  40. Zhuang Y, Yang X, Li Y, Chen Y, Peng X, Yu L, et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Appl Mater Interfaces. 2019;11(33):29604–18. https://doi.org/10.1021/acsami.9b10346.

    Article  CAS  PubMed  Google Scholar 

  41. **e Y, Bowe B, Li T, **an H, Yan Y, Al-Aly Z. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 2018;93(3):741–52. https://doi.org/10.1016/j.kint.2017.08.033.

    Article  CAS  PubMed  Google Scholar 

  42. Matsue Y, van der Meer P, Damman K, Metra M, Connor C, Ponikowski P, et al. Blood urea nitrogen-to-creatinine ratio in the general population and in patients with acute heart failure. Heart. 2017;103(6):407–14. https://doi.org/10.1136/heartjnl-2016-310112.

    Article  CAS  PubMed  Google Scholar 

  43. Lan Q, Zheng L, Zhou X, Wu H, Buys N, Liu Z, et al. The value of blood urea nitrogen in the prediction of risks of cardiovascular disease in an older population. Front Cardiovasc Med. 2021;8:614117. https://doi.org/10.3389/fcvm.2021.614117.

  44. Schneider C, Coll B, Jick S, Meier C. Doubling of serum creatinine and the risk of cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes mellitus: a cohort study. Clin Epidemiol. 2016;8:177–84. https://doi.org/10.2147/clep.S107060.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu M, Wang Z, Feng D, Shang Y, Li X, Liu J, et al. An insulin-inspired supramolecular hydrogel for prevention of type 1 diabetes. Adv Sci. 2021;8(10):2003599. https://doi.org/10.1002/advs.202003599.

  46. Xu D, Guo X, Zeng Z, Wang Y, Qiu J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct. 2021;12(6):2726–40. https://doi.org/10.1039/D0FO02761H.

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Williams G, Branford-White C, Li H, Li Y, Zhu L. Liraglutide-loaded poly (lactic-co-glycolic acid) microspheres: preparation and in vivo evaluation. Eur J of Pharm Sci. 2016;92:28–38. https://doi.org/10.1016/j.ejps.2016.06.018.

    Article  CAS  Google Scholar 

  48. Zhang Y, Huang N, Yan F, ** H, Zhou S, Shi J, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res. 2018;339:57–65. https://doi.org/10.1016/j.bbr.2017.11.015.

    Article  CAS  PubMed  Google Scholar 

  49. Mandard S, Stienstra R, Escher P, Tan N, Kim I, Gonzalez F, et al. Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors. Cell Mol Life Sci. 2007;64(9):1145–57. https://doi.org/10.1007/s00018-007-7006-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang J, Zhang T, Dong Z, Shi H, Xu J, Mao X, et al. Dietary supplementation with exogenous sea-cucumber-derived ceramides and glucosylceramides alleviates insulin resistance in high-fructose-diet-fed rats by upregulating the IRS/PI3K/Akt signaling pathway. J Agric Food Chem. 2021;69(32):9178–87. https://doi.org/10.1021/acs.jafc.0c06831.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the staff from the National Engineering Research Center of Seafood of Dalian Polytechnic University for their technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (32172208) and Central Funds Guiding the Local Science and Technology Development of China (2020JH6/10500002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and writing—original draft, S H Li; methodology and investigation, Y F Li; writing review and editing, D Wu; data curation and writing editing, Y Xu; methodology and investigation, H J Yan; funding acquisition and writing editing, J N Hu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiang-Ning Hu.

Ethics declarations

Ethics approval

All procedures of this investigation were approved by the Experimental Animal Ethics Committee of National Engineering Research Center of Seafood of Dalian Polytechnic University (Dalian, China, Animal JN. No DLPU2022010).

Consent to publication

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13346_2023_1428_MOESM1_ESM.docx

The characterization images of SA and SA-TF microgels, Fig. S1. Microscopy images of SA microgels in simulated digestive solutions at various stages, Fig. S2A. Swelling indexes of SA microgels and SA-TF microgels, Fig. S2B and C. The synthesis process and biocompatibility of Pue@SA-TF microgels, results of protein expression by Western blotting, Fig S3. (DOCX 1379 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sh., Li, Yf., Wu, D. et al. Metal-polyphenol microgels for oral delivery of puerarin to alleviate the onset of diabetes. Drug Deliv. and Transl. Res. 14, 757–772 (2024). https://doi.org/10.1007/s13346-023-01428-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01428-2

Keywords

Navigation