Log in

Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Diabesity is showing rising prevalence. Current treatment modalities include pharmacological and non-pharmacological approaches, yet associated with various drawbacks. Recently, gut microbial dysbiosis is documented as a crucial factor in the pathogenesis of diabesity. Targeting gut microbiome using modulators shows promising therapeutic strategy for diabesity management. In this line, nanonutraceuticals represent new class of gut microbial modulators. The present article explores the potential of nanonutraceuticals including nanoprobiotics, nanoprebiotics, and plant-derived nanovesicles that are fabricated on the ecofriendly food based scaffold with gut microbial modulatory potential for diabesity management. A number of compelling evidences from different studies support Bifidobacterium, Enterococcus, and Bacteroides genera and Lactobacillus plantarum and Akkermansia muciniphila species significant in diabesity management. The probable mechanisms reported for gut microbial dysbiosis–induced diabesity are mentioned. The review findings suggest gut microbiome as significant therapeutic target for diabesity management. Moreover, ecofriendly nanonutraceuticals developed using natural products including food-grade materials are efficient modulators of gut microbiome and indicate next-generation diabesity therapeutics. Clinical studies are imperative as further exploration may provide new dimensions to the future research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021. https://doi.org/10.1038/s41569-020-00465-5.

    Article  PubMed  Google Scholar 

  2. Rathod P, Yadav RP. Anti-diabesity potential of various multifunctional natural molecules. J Herb Med. 2021. https://doi.org/10.1016/j.hermed.2021.100430.

    Article  Google Scholar 

  3. Mendhe HG, Borkar SK, Shaikh M, Choudhari SG. Assessment of obesity and associated risk factors of diabesity in an urban population in Central India. Cureus. 2023. https://doi.org/10.7759/cureus.39776.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miclotte L, Van de Wiele T. Food processing, gut microbiota and the globesity problem. Crit Rev Food Sci Nutr. 2020. https://doi.org/10.1080/10408398.2019.1596878.

    Article  PubMed  Google Scholar 

  5. Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019. https://doi.org/10.1084/jem.20180448.

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022. https://doi.org/10.1136/gutjnl-2021-326789.

    Article  PubMed  Google Scholar 

  7. Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, Barrea L,Savastano S et al. On behalf of the Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group. Gut microbiota: a new path to treat obesity. Int J Obes Suppl. 2019; https://doi.org/10.1038/s41367-019-0011-7.

  8. Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021. https://doi.org/10.1007/s13238-020-00814-7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chawla R, Jaggi S. Medical Management of Diabesity. J Assoc Physicians India. 2019;67:52–6.

    PubMed  Google Scholar 

  10. Lingvay I, Sumithran P, Cohen RV, le Roux CW. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. The Lancet. 2022. https://doi.org/10.1016/S0140-6736(21)01919-X.

    Article  Google Scholar 

  11. Brunton SA. Diabesity. Clin Diabetes. 2022 Fall; https://doi.org/10.2337/cd22-0088.

  12. Leitner DR, Frühbeck G, Yumuk V, Schindler K, Micic D, Woodward E, et al. Obesity and Type 2 Diabetes: Two Diseases with a need for combined treatment strategies - EASO Can Lead the Way. Obes Facts. 2017. https://doi.org/10.1159/000480525.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stone T, DiPietro L, Stachenfeld NS. Exercise treatment of obesity. In: Feingold KR, Anawalt B, Boyce A, et al. Editors Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000 [Updated 2021 May 15]. https://www.ncbi.nlm.nih.gov/books/NBK278961/. Accessed 04 July 2023.

  14. Mutsaerts MAQ, Kuchenbecker WKH, Mol BW, Land JA, Hoek A. Dropout is a problem in lifestyle intervention programs for overweight and obese infertile women: a systematic review. 2013. https://doi.org/10.1093/humrep/det026.

    Article  Google Scholar 

  15. Collins KA, Huffman KM, Wolever RQ, Smith PJ, Siegler IC, Ross LM, et al. Determinants of Dropout from and Variation in Adherence to an Exercise Intervention: The STRRIDE Randomized Trials. Transl J Am Coll Sports Med. 2022. https://doi.org/10.1249/tjx.0000000000000190.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pappachan JM, Viswanath AK. Medical management of diabesity: do we have realistic targets? Curr Diab Rep. 2017. https://doi.org/10.1007/s11892-017-0828-9.

    Article  PubMed  Google Scholar 

  17. Goswami G, Shinkazh N, Davis N. Optimal pharmacologic treatment strategies in obesity and type 2 diabetes. J Clin Med. 2014. https://doi.org/10.3390/jcm3020595.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thibault R, Huber O, Azagury DE, Pichard C. Twelve key nutritional issues in bariatric surgery. 2016. https://doi.org/10.1016/j.clnu.2015.02.012.

    Article  Google Scholar 

  19. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020. https://doi.org/10.1016/j.ebiom.2019.11.051.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Andoh A, Nishida A, Takahashi K, Inatomi O, Imaeda H, Bamba S, et al. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr. 2016. https://doi.org/10.3164/jcbn.15-152.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006. https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  22. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006. https://doi.org/10.1038/4441022a.

    Article  PubMed  Google Scholar 

  23. Ghebretatios M, Schaly S, Prakash S. Nanoparticles in the food industry and their impact on human gut microbiome and diseases. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22041942.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iatcu CO, Steen A, Covasa M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients. 2021. https://doi.org/10.3390/nu14010166.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larsen N, Vogensen FK, Van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0009085.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007. https://doi.org/10.2337/db06-1491.

    Article  PubMed  Google Scholar 

  27. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007. https://doi.org/10.1073/pnas.0605374104.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dahiya DK, Renuka,Puniya M,Shandilya UK, Dhewa T, Kumar N et al. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: A review. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.00563.

  29. Pedersen H, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016. https://doi.org/10.1038/nature18646.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li X, Wang N, Yin B, Fang D, Jiang T, Fang S, et al. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J Appl Microbiol. 2016. https://doi.org/10.1111/jam.13276.

    Article  PubMed  Google Scholar 

  31. Shen Z, Zhu C, Quan Y, Yang J, Yuan W, Yang Z, et al. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J Gastroenterol Hepatol. 2018. https://doi.org/10.1111/jgh.14144.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang YC, Ching YH, Chiu CC, Liu JY, Hung SW, Huang WC, et al. TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0180025.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017. https://doi.org/10.1038/nm.4236.

    Article  PubMed  Google Scholar 

  34. Zhang Z, Mocanu V, Cai C, Dang J, Slater L, Deehan EC, et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome-a systematic review. Nutrients. 2019. https://doi.org/10.3390/nu11102291.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Napolitano M, Covasa M. Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.590370.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Clauss M, Gérard P, Mosca A, Leclerc M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front Nutr. 2021. https://doi.org/10.3389/fnut.2021.637010.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients. 2021. https://doi.org/10.3390/nu13062045.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Allen JM, Mailing LJ, Cohrs J, Salmonson C, Fryer JD, Nehra V, et al. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes. 2018. https://doi.org/10.1080/19490976.2017.1372077.

    Article  PubMed  Google Scholar 

  39. Anderson E, Durstine JL. Physical activity, exercise, and chronic diseases: A brief review. Sports Med Health Sci. 2019. https://doi.org/10.1016/j.smhs.2019.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rathod P, Kulkarni C, Yadav RP. Anti-diabesity principle from the seeds of Phyllanthus emblica L. Indian Drugs. 2020;57:41–50.

    Article  Google Scholar 

  41. Upadhyay S, Yadav R, Gangan V, Kanekar Y. Compounds for treatment of lipase mediated disease. United States Patent. Patent No.: US 7355, 055 B2. 2008. Reliance Life Sciences Pvt.Ltd. Maharashtra (IN).

  42. Santini A, Novellino E. To nutraceuticals and back: rethinking a concept. Foods. 2017. https://doi.org/10.3390/foods6090074.

  43. Daliu P, Santini A, Novellino E. A decade of nutraceutical patents: where are we now in 2018? Expert Opin Ther Pat. 2018. https://doi.org/10.1080/13543776.2018.1552260.

    Article  PubMed  Google Scholar 

  44. AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, et al. Nutraceuticals: transformation of conventional foods into health promoters/disease preventers and safety considerations. Molecules. 2021. https://doi.org/10.3390/molecules26092540.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shabbir U, Rubab M, Daliri EBM, Chelliah R, Javed A, Oh DH. Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota. Nutrients. 2021. https://doi.org/10.3390/nu13010206.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols.Molecules (Basel, Switzerland) 2019. https://doi.org/10.3390/molecules24020370.

  47. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-derived exosomal micro RNAs shape the gut microbiota. Cell Host Microbe. 2018. https://doi.org/10.1016/j.chom.2018.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Gu Y, Ren H, Wang S, Zhong H, Zhao X, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18414-8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Wu Y, Zhuang L, Chen X, Min H, Song S, et al. Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0218490.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Anhê FF, Nachbar RT, Varin TV, Vilela V, Dudonné S, Pilon G, et al. A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Mol Metab. 2017. https://doi.org/10.1016/j.molmet.2017.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Corb Aron RA, Abid A, Vesa CM, Nechifor AC, Behl T, Ghitea TC, et al. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of Akkermansia muciniphila as a key gut bacterium. Microorganisms. 2021. https://doi.org/10.3390/microorganisms9030618.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Michael DR, Jack AA, Masetti G, Davies TS, Loxley KE, Kerry-Smith J, et al. A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-60991-7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoti G, Matencio A, Rubin Pedrazzo A, Cecone C, Appleton SL, Khazaei Monfared Y, et al. Nutraceutical concepts and dextrin-based delivery systems. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23084102.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf. 2020. https://doi.org/10.1111/1541-4337.12547.

    Article  PubMed  Google Scholar 

  55. Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater. 2022. https://doi.org/10.1016/j.bioactmat.2021.11.027.

    Article  PubMed  PubMed Central  Google Scholar 

  56. McClements DJ, Li F, **ao H. The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Annu Rev Food Sci Technol. 2015. https://doi.org/10.1146/annurev-food-032814-014043.

    Article  PubMed  Google Scholar 

  57. Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, et al. An updated overview on nanonutraceuticals: focus on nanoprebiotics and nanoprobiotics. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21072285.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rathod P, Yadav RP. Nanopolyphenols: perspective on oxidative stress-induced diseases. MGM J Med Sci. 2022. https://doi.org/10.4103/mgmj.mgmj_100_22.

    Article  Google Scholar 

  59. Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24043188.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed. 2017. https://doi.org/10.2147/IJN.S127683.

    Article  Google Scholar 

  61. Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Adv. 2021. https://doi.org/10.1039/D0NA00952K.

    Article  PubMed  PubMed Central  Google Scholar 

  62. De Souza SL, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, Ramos ÓL, et al. Micro- and nano bio-based delivery systems for food applications: in vitro behavior. Adv Colloid Interface Sci. 2017. https://doi.org/10.1016/j.cis.2017.02.010.

    Article  Google Scholar 

  63. Bhagit AA, Mhatre SV, Yadav RP. Proteome mediated synthesis of biocompatible green fluorescence cerium oxide quantum dots with enhanced antioxidant activity. Adv Sci Eng Med. 2020. https://doi.org/10.1166/asem.2020.2656.

    Article  Google Scholar 

  64. Mohammadian M, Walyb MI, Moghadama M, Emam-Djomeha Z, Salamia M, Moosavi-Movahedi AA. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Sci Hum Wellness. 2020. https://doi.org/10.1016/j.fshw.2020.04.009.

    Article  Google Scholar 

  65. Krithika B, Preetha R. Formulation of protein based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotics. Mater Res Express. 2019;6.

    Article  Google Scholar 

  66. Zhang F, Qiu L, Xu X, Liu Z, Zhan H, Tao X, et al. Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. J Dairy Sci. 2017. https://doi.org/10.3168/jds.2016-11870.

    Article  PubMed  Google Scholar 

  67. Matsumoto Y, Ishii M, Hasegawa S, Sekimizu K. Enterococcus faecalis YM0831 suppresses sucrose-induced hyperglycemia in a silkworm model and in humans. Commun Biol. 2019. https://doi.org/10.1038/s42003-019-0407-5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fung WY, Yuen KH, Liong MT. Agrowaste-based nanofibers as a probiotic encapsulant: fabrication and characterization. J Agric Food Chem. 2011. https://doi.org/10.1021/jf2009342.

    Article  PubMed  Google Scholar 

  69. Ondee T, Pongpirul K, Visitchanakun P, Saisorn W, Kanacharoen S, Wongsaroj L, et al. Lactobacillus acidophilus LA5 improves saturated fat-induced obesity mouse model through the enhanced intestinal Akkermansia muciniphila Sci Rep. 2021. https://doi.org/10.1038/s41598-021-85449-2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021. https://doi.org/10.1038/s41565-021-00931-2.

    Article  PubMed  Google Scholar 

  71. Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue barriers. 2016. https://doi.org/10.1080/21688370.2015.1134415.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim SQ, Kim KH. Emergence of edible plant-derived nanovesicles as functional food components and nanocarriers for therapeutics delivery: potentials in human health and disease. Cells. 2022. https://doi.org/10.3390/cells11142232.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars). 2020. https://doi.org/10.1515/med-2020-0160.

    Article  PubMed  Google Scholar 

  74. Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, et al. Plant-derived nanovesicles: further exploration of biomedical function and application potential. APSB. 2023. https://doi.org/10.1016/j.apsb.2022.12.022.

    Article  Google Scholar 

  75. Garaeva L, Kamyshinsky R, Kil Y, Varfolomeeva E, Verlov N, Komarova E, et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-85833-y.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stotz HU, Brotherton D, Inal J. Communication is key: extracellular vesicles as mediators of infection and defence during host-microbe interactions in animals and plants. FEMS Microbiol Rev. 2022. https://doi.org/10.1093/femsre/fuab044.

    Article  Google Scholar 

  77. Liu C, Yan X, Zhang Y, Yang M, Ma Y, Zhang Y, et al. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnology. 2022. https://doi.org/10.1186/s12951-022-01421-w.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Akuma P, Okagu OD, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. 2019. https://doi.org/10.3389/fsufs.2019.00023.

    Article  Google Scholar 

  79. Spinler JK, Oezguen N, Runge JK, Luna RA, Karri V, Yang J, et al. Dietary impact of a plant-derived microRNA on the gut microbiome. ExRNA. 2020. https://doi.org/10.1186/s41544-020-00053-2.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Manzaneque-López MC, Sánchez-López CM, Pérez-Bermúdez P, Soler C, Marcilla A. Dietary-derived exosome-like nanoparticles as bacterial modulators: beyond MICRORNAS. Nutrients. 2023. https://doi.org/10.3390/nu15051265.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lei C, Teng Y, He L, Sayed M, Mu J, Xu F et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay.iScience 2021. https://doi.org/10.1016/j.isci.2021.102511.

  82. Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021. https://doi.org/10.3390/biom11010087.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BSB, et al. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm Sin B. 2022. https://doi.org/10.1016/j.apsb.2021.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021. https://doi.org/10.1016/j.ymthe.2020.11.030.

    Article  PubMed  Google Scholar 

  85. Ansari A, Hussain A, Wadekar R, Altamimi MA, Malik A, Mujtaba MA et al. Nanovesicles based drug targeting to control tumor growth and metastasis. Adv Cancer Biol. – Metastasis 2023; https://doi.org/10.1016/j.adcanc.2022.100083.

  86. Paolino D, Mancuso A, Cristiano MC, Froiio F, Lammari N, Celia C, et al. Nanonutraceuticals: the new frontier of supplementary food. Nanomaterials (Basel). 2021. https://doi.org/10.3390/nano11030792.

    Article  PubMed  Google Scholar 

  87. Abdifetah O, Na-Bangchang K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. Int J Nanomedicine. 2019. https://doi.org/10.2147/IJN.S213229.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Song Z, Zhu W, Song J, Wei P, Yang F, Liu N, et al. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (ε-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv. 2015. https://doi.org/10.3109/10717544.2014.901436.

    Article  PubMed  Google Scholar 

  89. Liu E, Zhang M, Huang Y. Pharmacokinetics and Pharmacodynamics (PK/PD) of Bionanomaterials. In: Zhao Y,Shen Y, editors. Biomed Nanomater. 2016. https://doi.org/10.1002/9783527694396.ch1.

  90. Nunes SS, Fernandes RS, Cavalcante CH, da Costa CI, Leite EA, Lopes SCA, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv Transl Res. 2019. https://doi.org/10.1007/s13346-018-0583-8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fan W, Peng H, Yu Z, Wang L, He H, Ma Y, et al. The long-circulating effect of pegylated nanoparticles revisited via simultaneous monitoring of both the drug payloads and nanocarriers. Acta Pharm Sin B. 2022. https://doi.org/10.1016/j.apsb.2021.11.016.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang X, Liu Y, Zhao Y, Han M, Guo Y, Kuang H, et al. A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation. Int J Nanomedicine. 2016. https://doi.org/10.2147/IJN.S102726.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Luan Q, Zhou W, Zhang H, Bao Y, Zheng M, Shi J, et al. Cellulose-based composite macrogels from cellulose fiber and cellulose nanofiber as intestine delivery vehicles for probiotics. J Agric Food Chem. 2018. https://doi.org/10.1021/acs.jafc.7b04754.

    Article  PubMed  Google Scholar 

  94. Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017. https://doi.org/10.1016/j.ymthe.2017.01.025.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2006. https://doi.org/10.2337/dc06-9912.

    Article  PubMed  Google Scholar 

  96. Park JC, Im SH. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med. 2020. https://doi.org/10.1038/s12276-020-0473-2.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005. https://doi.org/10.1073/pnas.0504978102.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chen Z, Zhou D, Han S, Zhou S, Jia G. Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles. Part Fibre Toxicol. 2019. https://doi.org/10.1186/s12989-019-0332-2.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018. https://doi.org/10.1186/s11671-018-2457-x.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ, et al. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015. https://doi.org/10.1002/wnan.1333.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, et al. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol. 2015. https://doi.org/10.1186/s12989-016-0149-1.

    Article  Google Scholar 

  102. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012. https://doi.org/10.1146/annurev-bioeng-071811-150124.

    Article  PubMed  Google Scholar 

  103. Lushchak O, Zayachkivska A, Vaiserman A. Metallic nanoantioxidants as potential therapeutics for type 2 diabetes: a hypothetical background and translational perspectives. Oxid Med Cell Longev. 2018. https://doi.org/10.1155/2018/3407375.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018. https://doi.org/10.1186/s12951-018-0392-8.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. S.N. Kadam, Former Vice Chancellor, MGM Institute of Health Sciences, Navi Mumbai, for his encouragement and support.

Author information

Authors and Affiliations

Authors

Contributions

Priyanka Rathod: conceptualization; data curation; validation; formal analysis; roles/writing, original draft; writing—review and editing. Raman P. Yadav: Conceptualization; supervision; validation; visualization; roles/writing, original draft; writing—review and editing.

Corresponding author

Correspondence to Raman P. Yadav.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Priyanka Rathod (First author) has completed her Ph.D. degree and now she has left the organization. At the time of first submission, she was associated with the organization.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, P., Yadav, R.P. Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges. Drug Deliv. and Transl. Res. 14, 17–29 (2024). https://doi.org/10.1007/s13346-023-01404-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01404-w

Keywords

Navigation