Log in

p38-MAPK is prerequisite for the synthesis of SARS-CoV-2 protein

  • Short Communication
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-α knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38α, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Banerjee S, Narayanan K, Mizutani T, Makino S. Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. J Virol. 2002;76:5937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becker M, Dulovic A, Junker D, Ruetalo N, Kaiser PD, Pinilla YT, Heinzel C, Haering J, Traenkle B, Wagner TR. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat Commun. 2021;12:3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Börgeling Y, Schmolke M, Viemann D, Nordhoff C, Roth J, Ludwig S. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. J Biol Chem. 2014;289:13–27.

    Article  PubMed  Google Scholar 

  4. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for develo** broad spectrum antiviral drugs. Rev Med Virol. 2021;31:1–16.

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhary K, Chaubey KK, Singh SV, Kumar N. Receptor tyrosine kinase signaling regulates replication of the peste des petits ruminants virus. Acta Virol. 2015;59:78–83.

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhuri S, Symons JA, Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antiviral Res. 2018;155:76–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen H, Zhang Z, Wang L, Huang Z, Gong F, Li X, Chen Y, Wu JJ. First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine. 2020;99:e23357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng Y, Sun F, Wang L, Gao M, **e Y, Sun Y, Liu H, Yuan Y, Yi W, Huang Z. Virus-induced p38 MAPK activation facilitates viral infection. Theranostics. 2020;10:12223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi M-S, Heo J, Yi C-M, Ban J, Lee N-J, Lee N-R, Kim SW, Kim N-J, Inn K-S. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation. Biochem Biophys Res Commun. 2016;477:311–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen P. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 1997;7:353–61.

    Article  CAS  PubMed  Google Scholar 

  12. Cook M. The role of MAPK p38 stress pathway-induced cellular translation in human and macaque cells targeted during B virus infection. 2016

  13. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.

    Article  CAS  PubMed  Google Scholar 

  14. Du Q, Huang Y, Wang T, Zhang X, Chen Y, Cui B, Li D, Zhao X, Zhang W, Chang L, Tong D. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via cap interaction of gC1qR. Oncotarget. 2016;7:17492–507.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Food U, & Drug Administration. Coronavirus (COVID-19) update: FDA issues emergency use authorization for potential COVID-19 treatment. FDA news release. 2020

  16. Galván Morales MÁ, Cabello Gutiérrez C, Mejía Nepomuceno F, Valle Peralta L, Valencia Maqueda E, Manjarrez Zavala ME. Parainfluenza virus type 1 induces epithelial IL-8 production via p38-MAPK signalling. J Immunol Res. 2014;2014:1–12.

    Article  Google Scholar 

  17. Griego SD, Weston CB, Adams JL, Tal-Singer R, Dillon SB. Role of p38 mitogen-activated protein kinase in rhinovirus-induced cytokine production by bronchial epithelial cells. J Immunol. 2000;165:5211–20.

    Article  CAS  PubMed  Google Scholar 

  18. Henklova P, Vrzal R, Papouskova B, Bednar P, Jancova P, Anzenbacherova E, Ulrichova J, Maurel P, Pavek P, Dvorak Z. SB203580, a pharmacological inhibitor of p38 MAP kinase transduction pathway activates ERK and JNK MAP kinases in primary cultures of human hepatocytes. Eur J Pharmacol. 2008;593:16–23.

    Article  CAS  PubMed  Google Scholar 

  19. Higgins CA, Nilsson-Payant BE, Kurland A, Adhikary P, Golynker I, Danziger O, Panis M, Rosenberg BR, Johnson JR. SARS-CoV-2 hijacks p38β/MAPK11 to promote viral protein translation. BioRxiv. 2021;591:421.

    Google Scholar 

  20. Hopcraft SE, Evans MJ. Selection of a hepatitis C virus with altered entry factor requirements reveals a genetic interaction between the E1 glycoprotein and claudins. Hepatology. 2015;62:1059–69.

    Article  CAS  PubMed  Google Scholar 

  21. Hovi T, Järvinen A, Pyhälä R, Ristola M, Salminen M. Viruses and antiviral drug resistance. Duodecim Laaketieteellinen Aikakauskirja. 2002;118:911–8.

    PubMed  Google Scholar 

  22. Huang G, Shi LZ, Chi H. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine. 2009;48:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Irwin KK, Renzette N, Kowalik TF, Jensen JD. Antiviral drug resistance as an adaptive process. Virus Evolut. 2016. https://doi.org/10.1093/ve/vew014.

    Article  Google Scholar 

  24. Khandelwal N, Chander Y, Kumar R, Nagori H, Verma A, Mittal P, Kamboj S, Verma SS, Khatreja S, Pal Y. Studies on growth characteristics and cross-neutralization of wild-type and delta SARS-CoV-2 from Hisar (India). Front Cell Infect Microbiol. 2021;11:771524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koul HK, Pal M, Koul S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 2013;4:342–59.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kumar N, Barua S, Riyesh T, Chaubey KK, Rawat KD, Khandelwal N, Mishra AK, Sharma N, Chandel SS, Sharma S. Complexities in isolation and purification of multiple viruses from mixed viral infections: viral interference, persistence and exclusion. PLoS ONE. 2016;11: e0156110.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kumar N, Khandelwal N, Kumar R, Chander Y, Rawat KD, Chaubey KK, Sharma S, Singh SV, Riyesh T, Tripathi BN, Barua S. Inhibitor of sarco/endoplasmic reticulum calcium-ATPase impairs multiple steps of paramyxovirus replication. Front Microbiol. 2019;10:209.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumar N, Liang Y, Parslow TG, Liang Y. Receptor tyrosine kinase inhibitors block multiple steps of influenza a virus replication. J Virol. 2011;85:2818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses. 2014;6:2287–327.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar N, Sharma NR, Ly H, Parslow TG, Liang Y. Receptor tyrosine kinase inhibitors that block replication of influenza a and other viruses. Antimicrob Agents Chemother. 2011;55:5553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, Ly H, Rouse BT. Host-directed antiviral therapy. Clin Microbiol Rev. 2020. https://doi.org/10.1128/CMR.00168-19.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar N, **n ZT, Liang Y, Ly H, Liang Y. NF-kappaB signaling differentially regulates influenza virus RNA synthesis. J Virol. 2008;82:9880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar R, Afsar M, Khandelwal N, Chander Y, Riyesh T, Dedar RK, Gulati BR, Pal Y, Barua S, Tripathi BN. Emetine suppresses SARS-CoV-2 replication by inhibiting interaction of viral mRNA with eIF4E. Antiviral Res. 2021;189:105056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar R, Khandelwal N, Chander Y, Nagori H, Verma A, Barua A, Godara B, Pal Y, Gulati BR, Tripathi BN. S-adenosylmethionine-dependent methyltransferase inhibitor DZNep blocks transcription and translation of SARS-CoV-2 genome with a low tendency to select for drug-resistant viral variants. Antiviral Res. 2022;197:105232.

    Article  CAS  PubMed  Google Scholar 

  35. Kumar R, Khandelwal N, Chander Y, Riyesh T, Tripathi BN, Kashyap SK, Barua S, Maherchandani S, Kumar N. MNK1 inhibitor as an antiviral agent suppresses buffalopox virus protein synthesis. Antiviral Res. 2018;160:126–36.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res. 2018;253:48–61.

    Article  CAS  PubMed  Google Scholar 

  37. Lamarche MJ, Borawski J, Bose A, Capacci-Daniel C, Colvin R, Dennehy M, Ding J, Dobler M, Drumm J, Gaither LA, Gao J, Jiang X, Lin K, McKeever U, Puyang X, Raman P, Thohan S, Tommasi R, Wagner K, **ong X, Zabawa T, Zhu S, Wiedmann B. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors. Antimicrob Agents Chemother. 2012;56:5149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee N, Wong CK, Chan PK, Lun SW, Lui G, Wong B, Hui DS, Lam CW, Cockram CS, Choi KW, Yeung AC, Tang JW, Sung JJ. Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection. Clin Infect Dis. 2007;45:723–31.

    Article  CAS  PubMed  Google Scholar 

  39. Li DK, Chung RT. Overview of direct-acting antiviral drugs and drug resistance of hepatitis C virus. Hepat C Virus Protoc. 2019. https://doi.org/10.1007/978-1-4939-8976-8_1.

    Article  Google Scholar 

  40. Locarnini S, Bowden S. Drug resistance in antiviral therapy. Clin Liver Dis. 2010;14:439–59.

    Article  PubMed  Google Scholar 

  41. Maik-Rachline G, Lifshits L, Seger R. Nuclear P38: roles in physiological and pathological processes and regulation of nuclear translocation. Int J Mol Sci. 2020;21:6102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Merino-Ramos T, Vázquez-Calvo Á, Casas J, Sobrino F, Saiz J-C, Martín-Acebes MA. Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme A carboxylase impairs West Nile virus replication. Antimicrob Agents Chemother. 2016;60:307–15.

    Article  CAS  PubMed  Google Scholar 

  43. Mikkelsen SS, Jensen SB, Chiliveru S, Melchjorsen J, Julkunen I, Gaestel M, Arthur JS, Flavell RA, Ghosh S, Paludan SR. RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J Biol Chem. 2009;284:10774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mudaliar P, Pradeep P, Abraham R, Sreekumar E. Targeting cap-dependent translation to inhibit chikungunya virus replication: selectivity of p38 MAPK inhibitors to virus-infected cells due to autophagy-mediated down regulation of phospho-ERK. J Gen Virol. 2021;102:001629.

    Article  CAS  Google Scholar 

  45. Pawlotsky JM. The science of direct-acting antiviral and host-targeted agent therapy. Antivir Ther. 2012;17:1109–17.

    Article  CAS  PubMed  Google Scholar 

  46. Peng H, Shi M, Zhang L, Li Y, Sun J, Zhang L, Wang X, Xu X, Zhang X, Mao Y. Activation of JNK1/2 and p38 MAPK signaling pathways promotes enterovirus 71 infection in immature dendritic cells. BMC Microbiol. 2014;14:1–9.

    Article  Google Scholar 

  47. Pillay D, Zambon M. Antiviral drug resistance. BMJ. 1998;317:660–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajnik M, Cascella M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). Maryland: Uniformed Services University of the Health Sciences; 2021.

    Google Scholar 

  49. Shapiro L, Heidenreich KA, Meintzer MK, & Dinarello CA. Role of p38 mitogen-activated protein kinase in HIV type 1 production in vitro. In: Proceedings of the national academy of sciences, 1998;95:7422-7426

  50. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour LG, National Cancer Institute of Canada Clinical Trials. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  CAS  PubMed  Google Scholar 

  51. Su A-R, Qiu M, Li Y-L, Xu W-T, Song S-W, Wang X-H, Song H-Y, Zheng N, Wu Z-W. BX-795 inhibits HSV-1 and HSV-2 replication by blocking the JNK/p38 pathways without interfering with PDK1 activity in host cells. Acta Pharmacol Sin. 2017;38:402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sugasti-Salazar M, Llamas-González YY, Campos D, González-Santamaría J. Inhibition of p38 mitogen-activated protein kinase impairs mayaro virus replication in human dermal fibroblasts and hela cells. Viruses. 2021;13:1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Team CI, Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, Abedi GR, Ahmed NS, Almendares O. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States. MedRxiv. 2020. https://doi.org/10.1101/2020.03.09.20032896.

    Article  Google Scholar 

  54. Ul Qamar MT, Alqahtani SM, Alamri MA, Chen L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10:313–9.

    Article  Google Scholar 

  55. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  CAS  PubMed  Google Scholar 

  56. Verma A, Dedar RK, Kumar R, Chander Y, Kamboj H, Kumar G, Verma R, Kumari S, Sharma S, Tripathi BN. Hesperetin blocks poxvirus replication with a low tendency to select for drug-resistant viral variants. J Med Virol. 2024;96: e29555.

    Article  CAS  PubMed  Google Scholar 

  57. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Watanabe K, Takizawa N, Katoh M, Hoshida K, Kobayashi N, Nagata K. Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. Virus Res. 2001;77:31–42.

    Article  CAS  PubMed  Google Scholar 

  59. Xu X, Miao J, Shao Q, Gao Y, Hong L. Apigenin suppresses influenza A virus-induced RIG-I activation and viral replication. J Med Virol. 2020;92:3057–66.

    Article  CAS  PubMed  Google Scholar 

  60. Zeisel MB, Lupberger J, Fofana I, Baumert TF. Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol. 2013;58:375–84.

    Article  PubMed  Google Scholar 

  61. Zhan Y, Yu S, Yang S, Qiu X, Meng C, Tan L, Song C, Liao Y, Liu W, Sun Y. Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathog. 2020;16: e1008610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang Y-P, Boerwinkle E, Fu Y-X. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol. 2004;4:1–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India (grant number CVD/2020/000103, CRG/2018/004747 and CRG/2019/000829 to N. Kumar and S. Barua). A part of this study belongs to the PhD thesis work of Priyasi Mittal.

Funding

This work was supported by Indian Council of Agricultural Research, New Delhi (grant number IXX14586 to N-Ku and NASF/ABA-8027/2020–21 to N-Ku and B.R.G.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baldev Raj Gulati or Naveen Kumar.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Data availability

The original contributions presented in the study are included in the article further inquiries can be directed to the corresponding authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, P., Khandelwal, N., Chander, Y. et al. p38-MAPK is prerequisite for the synthesis of SARS-CoV-2 protein. VirusDis. (2024). https://doi.org/10.1007/s13337-024-00873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13337-024-00873-y

Keywords

Navigation