Log in

Investigating the Impact of Gastric Emptying on Pharmacokinetic Parameters Using Delay Differential Equations and Principal Component Analysis

  • Short Communication
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Losartan presents multiple peaks after single oral administration, which can be attributed to gastric emptying. The aim of this study was to describe the multiple peak phenomenon of losartan using a delay differential model and a model with sine function. The impact of gastric emptying on pharmacokinetic parameters was investigated by applying principal component analysis to the individual parameter estimates.

Methods

Using MonolixTM, two population pharmacokinetic models were developed to describe the multiple peak phenomenon; the first using delay differential equations and the second using a sine function. Matlab® delay differential equation solver was used to arithmetically solve both functions. Principal component analysis and all statistical analyses were performed in the R language.

Results

The description of losartan multiple peaks can be achieved by the use of either delay differential equations or typical sine wave functions. Principal component analysis unveiled the impact of gastric emptying on the pharmacokinetic parameters. In the case of the delay differential equation model, a negative relationship was found between the constant delay tau1 and the parameters reflecting rate and extent of absorption (i.e., area under the curve [AUC], peak plasma concentration [Cmax], and the absorption rate constant). Similar results were obtained from the sine model, where a higher amplitude and lower period (i.e., higher frequency) of gastric emptying were associated with higher AUC and Cmax values.

Conclusions

The observed multiple peaks for certain drugs like losartan can be attributed to gastric emptying. Parameters describing gastric emptying can be associated with pharmacokinetic metrics like AUC and Cmax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure 4

References

  1. Davies NM, Takemoto JK, Brocks DR, Yáñez JA. Multiple peaking phenomena in pharmacokinetic disposition. Clin Pharmacokinet. 2010;49(6):351–77. https://doi.org/10.2165/11319320-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  2. Soulele K, Karalis V. On the population pharmacokinetics and the enterohepatic recirculation of total ezetimibe. Xenobiotica. 2019;49(4):446–56. https://doi.org/10.1080/00498254.2018.1463117.

    Article  CAS  PubMed  Google Scholar 

  3. Tamimi JJ, Salem II, Mahmood Alam S, et al. Comparative pharmacokinetics of two tablet formulations of Losartan: bioequivalence assessment. Biopharm Drug Dispos. 2005;26:205–10. https://doi.org/10.1002/bdd.448.

    Article  CAS  PubMed  Google Scholar 

  4. Karatza E, Karalis V. Modelling gastric emptying: a pharmacokinetic model simultaneously describing distribution of losartan and its active metabolite EXP-3174. Basic Clin Pharmacol Toxicol. 2020;126(3):193–202. https://doi.org/10.1111/bcpt.13321.

    Article  CAS  PubMed  Google Scholar 

  5. Kappert K, Tsuprykov O, Kaufmann J, Fritzsche J, Ott I, Goebel M, Bähr IN, Hässle PL, Gust R, Fleck E, Unger T, Stawowy P, Kintscher U. Chronic treatment with losartan results in sufficient serum levels of the metabolite EXP3179 for PPARgamma activation. Hypertension. 2009;54(4):738–43. https://doi.org/10.1161/HYPERTENSIONAHA.109.132886.

    Article  CAS  PubMed  Google Scholar 

  6. Christ DD, Wong PC, Wong YN, Hart SD, Quon CY, Lam GN. The pharmacokinetics and pharmacodynamics of the angiotensin II receptor antagonist losartan potassium (DuP 753/MK 954) in the dog. J Pharmacol Exp Ther. 1994;268(3):1199–205.

    CAS  PubMed  Google Scholar 

  7. Langguth P, Lee KM, Spahn-Langguth H, et al. Variable gastric emptying and discontinuities in drug absorption profiles: dependence of rates and extent of cimetidine absorption on motility phase and pH. Biopharm Drug Dispos. 1994;15:719–46. https://doi.org/10.1002/bdd.2510150902.

    Article  CAS  PubMed  Google Scholar 

  8. Sugihara M, Takeuchi S, Sugita M, et al. Analysis of intra- and intersubject variability in oral drug absorption in human bioequivalence studies of 113 generic products. Mol Pharm. 2015;12(12):4405–13. https://doi.org/10.1021/acs.molpharmaceut.5b00602.

    Article  CAS  PubMed  Google Scholar 

  9. Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20. https://doi.org/10.1023/A:1016212804288.

    Article  CAS  PubMed  Google Scholar 

  10. Talattof A, Price JC, Amidon GL. Gastrointestinal motility variation and implications for plasma level variation: oral drug products. Mol Pharm. 2016;13(2):557–67. https://doi.org/10.1021/acs.molpharmaceut.5b00774.

    Article  CAS  PubMed  Google Scholar 

  11. Erneux T. Applied delay differential equations. In: Antman SS, Marsden JE, Sirovich L, editors. Surveys and tutorials in the applied mathematical sciences. Berlin: Springer; 2009. p. 1–188.

    Google Scholar 

  12. Shampine LF, Thompson S. Solving DDEs in Matlab. Appl Numer Math. 2001;37(4):441–58. https://doi.org/10.1016/S0168-9274(00)00055-6.

    Article  Google Scholar 

  13. Denney W, Duvvuri S, Buckeridge C. Simple, automatic noncompartmental analysis: the PKNCA R Package. J Pharmacokinet Pharmacodyn. 2015;42(1):11–107. https://doi.org/10.1007/s10928-015-9432-2.

    Article  Google Scholar 

  14. Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.5. 2017. https://CRAN.R-project.org/package=factoextra. Accessed 22 Mar 2021.

  15. Sica DA, Gehr TW, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44(8):797–814. https://doi.org/10.2165/00003088-200544080-00003.

    Article  CAS  PubMed  Google Scholar 

  16. Tsume Y, Mudie DM, Langguth P, et al. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–63. https://doi.org/10.1016/j.ejps.2014.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Verisfield UK Ltd for providing the C‐t data to perform this computational analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vangelis Karalis.

Ethics declarations

Funding

The authors have not received any funding for this study

Conflict of interest

All authors declare no conflict of interest and approved this submission

Availability of data and material

The concentration–time data of losartan and its metabolite are confidential and belong to Verisfield UK Ltd.

Code availability

The developed codes in Matlab® and R are available upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatza, E., Karalis, V. Investigating the Impact of Gastric Emptying on Pharmacokinetic Parameters Using Delay Differential Equations and Principal Component Analysis. Eur J Drug Metab Pharmacokinet 46, 451–458 (2021). https://doi.org/10.1007/s13318-021-00683-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-021-00683-3

Navigation