Log in

Feasibility of Using Oral Fluid for Therapeutic Drug Monitoring of Antiepileptic Drugs

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Therapeutic drug monitoring (TDM) of antiepileptic drugs (AED) using blood is well established but limited by its invasiveness, accessibility, cost, interpretation errors, and related disturbances in protein binding. TDM using oral fluid (OF) could overcome these limitations. This paper provides a summary of the current evidence for using OF as a matrix to perform TDM of AEDs, as well as practical considerations. A literature search of MEDLINE, EMBASE, and the Cochrane Library was conducted on April 9, 2018 (and then updated on May 20, 2020) using all AEDs as keywords along with “oral fluid,” “saliva,” “salivary,” “seizure,” “epilepsy,” “antiepileptic,” and “anticonvulsant.” A total of 18 relevant articles were found and included in this review. There is evidence to suggest that AED TDM using OF is feasible and that reference ranges can be calculated for the following drugs: carbamazepine, ethosuximide, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, primidone, topiramate, and valproic acid. For all other AEDs, there is either a lack of evidence on the feasibility of TDM using OF or the evidence indicates that TDM using OF is not feasible. Practical considerations should include the timing and method of OF collection (stimulated or unstimulated) due to their probable impact on the reliability of AED TDM. Using OF may improve the acceptability and accessibility and reduce the cost of AED TDM. Clinical implementation requires standardized collection protocols, more rigorously defined OF reference ranges, and further studies to determine the relevance to clinically important outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Eadie MJ. Plasma level monitoring of anticonvulsants. Clin Pharmacokinet. 1976;1(1):52–66. https://doi.org/10.2165/00003088-197601010-00005.

    Article  CAS  PubMed  Google Scholar 

  2. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, et al. Antiepileptic drugs—best practice guidelines for therapeutic drug monitoring: a position paper by the Subcommission on Therapeutic Drug Monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49:1239–76. https://doi.org/10.1111/j.1528-1167.2008.01561.x.

  3. Patsalos PN, Spencer EP, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update. Ther Drug Monit. 2018;40(5):526–48. https://doi.org/10.1097/FTD.0000000000000546.

    Article  CAS  PubMed  Google Scholar 

  4. Haeckel R. Factors influencing the saliva/plasma ratio of drugs. Ann N Y Acad Sci. 1993;694:128–42. https://doi.org/10.1111/j.1749-6632.1993.tb18347.x.

    Article  CAS  PubMed  Google Scholar 

  5. Gjerde H, Langel K, Favretto D, Verstraete AG. Detection of 4 benzodiazepines in oral fluid as biomarker for presence in blood. Ther Drug Monit. 2014;36:252–6. https://doi.org/10.1097/FTD.0b013e3182a3ab42.

    Article  CAS  PubMed  Google Scholar 

  6. Patsalos PN, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs by use of saliva. Ther Drug Monit. 2013;35:4–29. https://doi.org/10.1097/FTD.0b013e31827c11e7.

    Article  CAS  PubMed  Google Scholar 

  7. Djordjevic S, Kilibarda V, Vucinic S, Stojanovic T, Antonijevic B. Toxicokinetics and correlation of carbamazepine salivary and serum concentrations in acute poisonings. Vojnosanit Pregl. 2012;69:389–93. https://doi.org/10.2298/VSP1205389D.

    Article  PubMed  Google Scholar 

  8. Klein P, Herr D, Pearl PL, Natale J, Levine Z, Nogay C, et al. Results of phase II pharmacokinetic study of levetiracetam for prevention of post-traumatic epilepsy. Epilepsy Behav. 2012;24:457–61. https://doi.org/10.1016/j.yebeh.2012.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cawello W, Bokens H, Nickel B, Andreas J-O, Halabi A. Tolerability, pharmacokinetics, and bioequivalence of the tablet and syrup formulations of lacosamide in plasma, saliva, and urine: saliva as a surrogate of pharmacokinetics in the central compartment. Epilepsia. 2013;54:81–8. https://doi.org/10.1111/j.1528-1167.2012.03725.x.

    Article  CAS  PubMed  Google Scholar 

  10. Dwivedi R, Gupta YK, Singh M, Joshi R, Tiwari P, Kaleekal T, et al. Correlation of saliva and serum free valproic acid concentrations in persons with epilepsy. Seizure. 2015;25:187–90. https://doi.org/10.1016/j.seizure.2014.10.010.

    Article  PubMed  Google Scholar 

  11. Kaewdoung P, Chinvarun Y, Puripokai C, Tantisira M. Relationship between carbamazepine concentrations in serum and saliva of Thai epileptic patients. Thai J Pharm Sci. 2015;39:21–7.

    CAS  Google Scholar 

  12. Baldo M, Hunzicker G, Altamirano J, Murguia M. Saliva as a noninvasive biological sample to compare bioavailability of phenytoin formulations by LC–MS/MS. Int J Pharm Sci Res. 2015;6:3752–60. https://doi.org/10.13040/IJPSR.0975-8232.6%289%29.3752-60.

    Article  CAS  Google Scholar 

  13. Li RR, Sheng XY, Ma LY, Yao HX, Cai LX, Chen CY, et al. Saliva and plasma monohydroxycarbamazepine concentrations in pediatric patients with epilepsy. Ther Drug Monit. 2016;38:365–70. https://doi.org/10.1097/FTD.0000000000000278.

    Article  CAS  PubMed  Google Scholar 

  14. Dwivedi R, Singh M, Kaleekal T, Gupta YK, Tripathi M, et al. Concentration of antiepileptic drugs in persons with epilepsy: a comparative study in serum and saliva. Int J Neurosci. 2016;126:972–8. https://doi.org/10.3109/00207454.2015.1088848.

    Article  CAS  PubMed  Google Scholar 

  15. Hamdan II, Alsous M, Masri AT. Chromatographic characterization and method development for determination of levetiracetam in saliva: application to correlation with plasma levels. J Anal Methods Chem. 2017;2017:7846742. https://doi.org/10.1155/2017/7846742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karas-Ruszczyk K, Kuczynska J, Sienkiewicz-Jarosz H, Kurkowska-Jastrzebska I, Bienkowski P, Restel M, et al. Comparison of plasma, saliva, and hair levetiracetam concentrations. Ther Drug Monit. 2017;39:263–8. https://doi.org/10.1097/FTD.0000000000000396.

    Article  CAS  PubMed  Google Scholar 

  17. Murru A, Torra M, Callari A, Pacchiarotti I, Romero S, Gonzalez de la Presa B, et al. A study on the bioequivalence of lithium and valproate salivary and blood levels in the treatment of bipolar disorder. Eur Neuropsychopharmacol. 2017;27:744–50. https://doi.org/10.1016/j.euroneuro.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  18. Brandt C, Bien CG, Helmer R, May TW. Assessment of the correlations of lacosamide concentrations in saliva and serum in patients with epilepsy. Epilepsia. 2018;59:e34–9. https://doi.org/10.1111/epi.14023.

    Article  CAS  PubMed  Google Scholar 

  19. Idkaidek N, Hamadi S, El-Assi M, Al-Shalalfeh A, Al-Ghazawi A. Saliva versus plasma therapeutic drug monitoring of pregabalin in Jordanian patients. Drug Res (Stuttg). 2018;68(10):596–600. https://doi.org/10.1055/a-0600-2113.

    Article  CAS  Google Scholar 

  20. Neumann J, Beck O, Dahmen N, Bottcher M. Potential of oral fluid as a clinical specimen for compliance monitoring of psychopharmacotherapy. Ther Drug Monit. 2018;40(2):245–51. https://doi.org/10.1097/FTD.0000000000000493.

    Article  CAS  PubMed  Google Scholar 

  21. Kuczynska J, Karas-Ruszczyk K, Zakrzewska A, Dermanowski M, Sienkiewicz-Jarosz H, Kurkowska-Jastrzebska I, et al. Comparison of plasma, saliva, and hair lamotrigine concentrations. Clin Biochem. 2019;74:24–30. https://doi.org/10.1016/j.clinbiochem.2019.09.009.

    Article  CAS  PubMed  Google Scholar 

  22. Bakke E, Hoiseth G, Furuhaugen H, Berg T, Arnestad M, Gjerde H. Oral fluid to blood concentration ratios of different psychoactive drugs in samples from suspected drugged drivers. Ther Drug Monit. 2020:42(5):795–800. https://doi.org/10.1097/FTD.0000000000000760.

  23. Kim D-Y, Moon J, Shin Y-W, Lee S-T, Jung K-H, Park K-I, et al. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia. 2020;61:1120–8. https://doi.org/10.1111/epi.16513.

  24. Aps JKM, Martens LC. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150(2):119–31. https://doi.org/10.1016/j.forsciint.2004.10.026.

    Article  CAS  PubMed  Google Scholar 

  25. McAuliffe JJ, Sherwin AL, Leppik IE, Fayle SA, Pippenger CE, et al. Salivary levels of anticonvulsants: a practical approach to drug monitoring. Neurology. 1977;27:409–13.

    Article  CAS  PubMed  Google Scholar 

  26. Cone EJ, Huestis MA. Interpretation of oral fluid tests for drugs of abuse. Ann N Y Acad Sci. 2007;1098:51–103. https://doi.org/10.1196/annals.1384.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsanaclis LM, Allen J, Perucca E, Routledge PA, Richens A. Effect of valproate on free plasma phenytoin concentrations. Br J Clin Pharmacol. 1984;18(1):17–20. https://doi.org/10.1111/j.1365-2125.1984.tb05015.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pisani FD, Di Perri RG. Intravenous valproate: effects on plasma and saliva phenytoin levels. Neurology. 1981;31(4):467–70. https://doi.org/10.1212/wnl.31.4_part_2.467.

    Article  CAS  PubMed  Google Scholar 

  29. Miles MV, Tennison MB, Greenwood RS. Intraindividual variability of carbamazepine, phenobarbital, and phenytoin concentrations in saliva. Ther Drug Monit. 1991;13:166–71.

    Article  CAS  PubMed  Google Scholar 

  30. al Za’abi M, Deleu D, Batchelor C. Salivary free concentrations of anti-epileptic drugs: an evaluation in a routine clinical setting. Acta Neurol Belgica. 2003;103:19–23.

    Google Scholar 

  31. Miles MV, Tennison MB, Greenwood RS, Benoit SE, Thorn MD, Messenheimer JA, et al. Evaluation of the Ames Seralyzer for the determination of carbamazepine, phenobarbital, and phenytoin concentrations in saliva. Ther Drug Monit. 1990;12(5):501–10. https://doi.org/10.1097/00007691-199009000-00016.

    Article  CAS  PubMed  Google Scholar 

  32. Tomlin PI, McKinlay I, Smith I. A study on carbamazepine levels, including estimation of 10–11 epoxy-carbamazepine and levels in free plasma and saliva. Dev Med Child Neurol. 1986;28:713–8.

    Article  CAS  PubMed  Google Scholar 

  33. Goldsmith RF, Ouvrier RA. Salivary anticonvulsant levels in children: a comparison method. Ther Drug Monit. 1981;3:151–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bartels H, Oldigs HD, Gunther E. Use of saliva in monitoring carbamazepine medication in epileptic children. Eur J Pediatr. 1977;126:37–44. https://doi.org/10.1007/BF00443121.

    Article  CAS  PubMed  Google Scholar 

  35. Kristensen O, Larsen HF. Value of saliva samples in monitoring carbamazepine concentrations in epileptic patients. Acta Neurol Scand. 1980;61:344–50.

    Article  CAS  PubMed  Google Scholar 

  36. Westenberg HG, van der Kleijn E, Oei TT, de Zeeuw RA. Kinetics of carbamazepine and carbamazepine epoxide, determined by use of plasma and saliva. Clin Pharmacol Ther. 1978;23:320–8.

    Article  CAS  PubMed  Google Scholar 

  37. Rylance GW, Moreland TA. Saliva carbamazepine and phenytoin level monitoring. Arch Dis Childhood. 1981;56:637–40.

    Article  CAS  Google Scholar 

  38. Gorodischer R, Burtin P, Verjee Z, Hwang P, Koren G, et al. Is saliva suitable for therapeutic monitoring of anticonvulsants in children: an evaluation in the routine clinical setting. Ther Drug Monit. 1997;19:637–42. https://doi.org/10.1097/00007691-199712000-00006.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenthal E, Hoffer E, Ben-Aryeh H, Badarni S, Benderly A, Hemli Y, et al. Use of saliva in home monitoring of carbamazepine levels. Epilepsia. 1995;36:72–4. https://doi.org/10.1111/j.1528-1157.1995.tb01668.x.

    Article  CAS  PubMed  Google Scholar 

  40. Vasudev A, Tripathi KD, Puri V. Correlation of serum and salivary carbamazepine concentration in epileptic patients: implications for therapeutic drug monitoring. Neurology India. 2002;50:60–2.

  41. Chee KY, Lee D, Byron D, Naidoo D, Bye A, et al. A simple collection method for saliva in children: potential for home monitoring of carbamazepine therapy. Br J Clin Pharmacol. 1993;35:311–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eeg-Olofsson O, Nilsson HL, Tonnby B, Arvidsson J, Grahn PA, Gylje H, et al. Diurnal variation of carbamazepine and carbamazepine-10,11-epoxide in plasma and saliva in children with epilepsy: a comparison between conventional and slow-release formulations. J Child Neurol. 1990;5:159–65.

  43. Paxton JW, Donald RA. Concentrations and kinetics of carbamazepine in whole saliva, serum ultrafiltrate, and serum. Clin Pharmacol Ther. 1980;28:695–702.

    Article  CAS  PubMed  Google Scholar 

  44. Moreland TA, Priestman DA, Rylance GW. Saliva carbamazepine levels in children before and during multiple dosing. Br J Clin Pharmacol. 1982;13:647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Piredda S, Monaco F. Ethosuximide in tears, saliva, and cerebrospinal fluid. Ther Drug Monit. 1981;3:321–3.

    Article  CAS  PubMed  Google Scholar 

  46. Bachmann K, Schwartz J, Sullivan T, Jauregui L. Single sample estimate of ethosuximide clearance. Int J Clin Pharmacol Ther Toxicol. 1986;24:546–50.

    CAS  PubMed  Google Scholar 

  47. Greenaway C, Ratnaraj N, Sander JW, Patsalos PN. Saliva and serum lacosamide concentrations in patients with epilepsy. Epilepsia. 2011;52:258–63. https://doi.org/10.1111/j.1528-1167.2010.02751.x.

    Article  CAS  PubMed  Google Scholar 

  48. Tsiropoulos I, Kristensen O, Klitgaard NA. Saliva and serum concentration of lamotrigine in patients with epilepsy. Ther Drug Monit. 2000;22:517–21. https://doi.org/10.1097/00007691-200010000-00003.

    Article  CAS  PubMed  Google Scholar 

  49. Ryan M, Grim SA, Miles MV, Tang PH, Fakhoury TA, Strawsburg RH, et al. Correlation of lamotrigine concentrations between serum and saliva. Pharmacotherapy. 2003;23:1550–7. https://doi.org/10.1592/phco.23.15.1550.31957.

    Article  CAS  PubMed  Google Scholar 

  50. Trnavska Z, Krejcova H, Tkaczykovam, Salcmanova Z, Elis J. Pharmacokinetics of lamotrigine (Lamictal) in plasma and saliva. Eur J Drug Metab Pharmacokinet. 1991;3:211–5.

  51. Malone SA, Eadie MJ, Addison RS, Wright AWE, Dickinson RG. Monitoring salivary lamotrigine concentrations. J Clin Neurosci. 2006;13:902–7. https://doi.org/10.1016/j.jocn.2005.12.037.

    Article  CAS  PubMed  Google Scholar 

  52. Incecayir T, Agabeyoglu I, Gucuyener K. Comparison of plasma and saliva concentrations of lamotrigine in healthy volunteers. Arzneimittel-Forschung/Drug Res. 2007;57:517–21.

    CAS  Google Scholar 

  53. Cohen AF, Land GS, Breimer DD, Yuen WC, Winton C, Peck AW, et al. Lamotrigine, a new anticonvulsant: pharmacokinetics in normal humans. Clin Pharmacol Ther. 1987;42:535–41.

    Article  CAS  PubMed  Google Scholar 

  54. Mecarelli O, Li Voti P, Pro S, Romolo FS, Rotolo M, Pulitano P, et al. Saliva and serum levetiracetam concentrations in patients with epilepsy. Ther Drug Monit. 2007;29:313–8. https://doi.org/10.1097/FTD.0b013e3180683d55.

    Article  CAS  PubMed  Google Scholar 

  55. Grim SA, Ryan M, Miles MV, Tang PH, Strawsburg RH, deGrauw TJ, et al. Correlation of levetiracetam concentrations between serum and saliva. Ther Drug Monit. 2003;25:61–6. https://doi.org/10.1097/00007691-200302000-00009.

    Article  CAS  PubMed  Google Scholar 

  56. Lins RL, Otoul C, De Smedt F, Coupez R, Stockis A. Comparison of plasma and saliva concentrations of levetiracetam following administration orally as a tablet and as a solution in healthy adult volunteers. Int J Clin Pharmacol Ther. 2007;45:47–54.

    Article  CAS  PubMed  Google Scholar 

  57. Klitgaard NA, Kristensen O. Use of saliva for monitoring oxcarbazepine therapy in epileptic patients. Eur J Clin Pharmacol. 1986;31:91–4.

    Article  CAS  PubMed  Google Scholar 

  58. Cardot JM, Degen P, Flesch G, Menge P, Dieterle W. Comparison of plasma and saliva concentrations of the active monohydroxy metabolite of oxcarbazepine in patients at steady state. Biopharm Drug Dispos. 1995;16:603–14. https://doi.org/10.1002/bdd.2510160708.

    Article  CAS  PubMed  Google Scholar 

  59. Miles MV, Tang PH, Ryan MA, Grim SA, Fakhoury TA, Strawsburg RH, et al. Feasibility and limitations of oxcarbazepine monitoring using salivary monohydroxycarbamazepine (MHD). Ther Drug Monit. 2004;26:300–4. https://doi.org/10.1097/00007691-200406000-00014.

    Article  CAS  PubMed  Google Scholar 

  60. Theisohn M, Heimann G. Disposition of the antiepileptic oxcarbazepine and its metabolites in healthy volunteers. Eur J Clin Pharmacol. 1982;22:545–51. https://doi.org/10.1007/BF00609629.

    Article  CAS  PubMed  Google Scholar 

  61. Kristensen O, Klitgaard NA, Jonsson B, Sindrup S. Pharmacokinetics of 10-OH-carbazepine, the main metabolic of the antiepileptic oxcarbazepine, from serum and saliva concentrations. Acta Neurol Scand. 1983;68:145–50.

    Article  CAS  PubMed  Google Scholar 

  62. Cook CE, Amerson E, Poole WK, Lesser P, O’Tuama L. Phenytoin and phenobarbital concentrations in saliva and plasma measured by radioimmunoassay. Clin Pharmacol Ther. 1975;18:742–7. https://doi.org/10.1002/cpt1975186742.

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt D, Kupferberg J. Diphenylhydantoin, phenobarbital, and primidone in saliva, plasma, and cerebrospinal fluid. Epilepsia. 1975;16:735–41.

    Article  CAS  PubMed  Google Scholar 

  64. Luoma PV, Heikkinen JE, Ylostalo PR. Phenobarbital pharmacokinetics and salivary and serum concentrations in pregnancy. Ther Drug Monit. 1982;4:65–8.

    Article  CAS  PubMed  Google Scholar 

  65. Tokugawa K, Ueda K, Fujito H, Kurokawa T. Correlation between the saliva and free serum concentration of phenobarbital in epileptic children. Eur J Pediatr. 1986;145:401–2. https://doi.org/10.1007/BF00439247.

    Article  CAS  PubMed  Google Scholar 

  66. Nishihara K, Uchino K, Saitoh Y, Honda Y, Nakagawa F, Tamura Z. Estimation of plasma unbound phenobarbital concentration by using mixed saliva. Epilepsia. 1979;20:37–45.

    Article  CAS  PubMed  Google Scholar 

  67. Reynolds F, Ziroyanis PN, Jones NF, Smith SE. Salivary phenytoin concentrations in epilepsy and in chronic renal failure. Lancet (London, England). 1976;2:384–6.

    Article  CAS  Google Scholar 

  68. Bachmann K, Forney RB Jr, Voeller K. Monitoring phenytoin in salivary and plasma ultrafiltrates of pediatric patients. Ther Drug Monit. 1983;5:325–9.

    Article  CAS  PubMed  Google Scholar 

  69. Lifshitz M, Ben-Zvi Z, Gorodischer R. Monitoring phenytoin therapy using citric acid-stimulated saliva in infants and children. Ther Drug Monit. 1990;12:334–8.

    Article  CAS  PubMed  Google Scholar 

  70. Liamsuwan S, Jaiweerawattana U. Correlation between serum and salivary phenytoin concentrations in Thai epileptic children. J Med Assoc Thailand. 2011;94(Suppl 3):S172–7.

    Google Scholar 

  71. Bartels H, Gunther E, Wallis S. Flow-dependent salivary primidone levels in epileptic children. Epilepsia. 1979;20:431–6.

    Article  CAS  PubMed  Google Scholar 

  72. Miles MV, Tang PH, Glauser TA, Ryan MA, Grim SA, Strawsburg RH, et al. Topiramate concentration in saliva: an alternative to serum monitoring. Pediatr Neurol. 2003;29:143–7. https://doi.org/10.1016/S0887-8994%2803%2900048-1.

    Article  PubMed  Google Scholar 

  73. Kongrit J, Chinvarun Y, Niwattisaiwong N. Verification of using saliva as an alternative to serum for topiramate monitoring. Thai J Pharm Sci. 2014;38:61–6.

    CAS  Google Scholar 

  74. Monaco F, Piredda S, Mutani R, Mastropaolo C, Tondi M. The free fraction of valproic acid in tears, saliva, and cerebrospinal fluid. Epilepsia. 1982;23:23–6.

    Article  CAS  PubMed  Google Scholar 

  75. Saito M, Edo K, Ishikawa H, Hikita M, Kan R, Watabe M, et al. TDM using salivary VPA levels in saliva samples taken at patients’ homes (1). Iryo Yakugaku (Jpn J Pharm Health Care Sci). 2005;31(3):217–22. https://doi.org/10.5649/jjphcs.31.217.

  76. Gugler R, Schell A, Eichelbaum M, Froscher W, Schulz HU. Disposition of valproic acid in man. Eur J Clin Pharmacol. 1977;12:125–32. https://doi.org/10.1007/BF00645133.

    Article  CAS  PubMed  Google Scholar 

  77. Abbott FS, Burton R, Orr J, Wladichuk D, Ferguson S, Sun TH. Valproic acid analysis in saliva and serum using selected ion monitoring (electron ionization) of the tert-butyldimethylsilyl derivatives. J Chromatogr. 1982;227:433–44.

  78. Nitsche V, Mascher H. The pharmacokinetics of valproic acid after oral and parenteral administration in healthy volunteers. Epilepsia. 1982;23:153–62.

    Article  CAS  PubMed  Google Scholar 

  79. Wallace SM, Shah VP, Riegelman S. GLC analysis of acetazolamide in blood, plasma, and saliva following oral administration to normal subjects. J Pharm Sci. 1977;66:527–30.

    Article  CAS  PubMed  Google Scholar 

  80. Hartley R, Lucock M, Becker M, Smith IJ, Forsythe WI. Solid-phase extraction of acetazolamide from biological fluids and subsequent analysis by high-performance liquid chromatography. J Chromatogr. 1986;377:295–305.

    Article  CAS  PubMed  Google Scholar 

  81. Rolan P, Sargentini-Maier ML, Pigeolet E, Stockis A. The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men. Br J Clin Pharmacol. 2008;66:71–5. https://doi.org/10.1111/j.1365-2125.2008.03158.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bardy AH, Seppala T, Salokorpi T, Granstrom ML, Santavuori P. Monitoring of concentrations of clobazam and norclobazam in serum and saliva of children with epilepsy. Brain Dev. 1991;13:174–9.

    Article  CAS  PubMed  Google Scholar 

  83. Hart BJ, Wilting J, de Gier JJ. The stability of benzodiazepines in saliva. Methods Find Exp Clin Pharmacol. 1988;10:21–6.

    CAS  PubMed  Google Scholar 

  84. Berry DJ, Beran RG, Plunkeft MJ, Clarke LA, Hung WT. The absorption of gabapentin following high dose escalation. Seizure. 2003;12(1):28–36. https://doi.org/10.1016/s1059131102001425.

    Article  PubMed  Google Scholar 

  85. Mazzucchelli I, Rapetti M, Fattore C, Franco V, Gatti G, Perucca E. Development and validation of an HPLC-UV detection assay for the determination of rufinamide in human plasma and saliva. Anal Bioanal Chem. 2011;401:1013–21. https://doi.org/10.1007/s00216-011-5126-9.

    Article  CAS  PubMed  Google Scholar 

  86. Durham SL, Hoke JF, Chen TM. Pharmacokinetics and metabolism of vigabatrin following a single oral dose of [14C]vigabatrin in healthy male volunteers. Drug Metab Dispos. 1993;21:480–4.

    CAS  PubMed  Google Scholar 

  87. Jones MD, Ryan M, Miles MV, Tang PH, Fakhoury TA, Degrauw TJ, et al. Stability of salivary concentrations of the newer antiepileptic drugs in the postal system. Ther Drug Monit. 2005;27:576–9. https://doi.org/10.1097/01.ftd.0000171869.56817.ae.

    Article  CAS  PubMed  Google Scholar 

  88. Kumagai N, Seki T, Yamada T, Takuma Y, Hirai K. Concentrations of zonisamide in serum, free fraction, mixed saliva and cerebrospinal fluid in epileptic children treated with monotherapy. Jpn J Psychiatry Neurol. 1993;47:291–2.

    CAS  PubMed  Google Scholar 

  89. Oles KS, Penry JK, Cole DLW, Howard G. Use of acetazolamide as an adjunct to carbamazepine in refractory partial seizures. Epilepsia. 1989;30(1):74–8. https://doi.org/10.1111/j.1528-1157.1989.tb05285.x.

  90. Klein P, Diaz A, Gasalla T, Whitesides J. A review of the pharmacology and clinical efficacy of brivaracetam. Clin Pharmacol. 2018;10:1–22. https://doi.org/10.2147/CPAA.S114072.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Reimers A, Berg JA, Burns ML, Brodtkorb E, Johannessen SI, Johannessen LC. Reference ranges for antiepileptic drugs revisited: a practical approach to establish national guidelines. Drug Des Dev Ther. 2018;12:271–80. https://doi.org/10.2147/DDDT.S154388.

    Article  CAS  Google Scholar 

  92. Knott C, Reynolds F. The place of saliva in antiepileptic drug monitoring. Ther Drug Monit. 1984;6:35–41.

    Article  CAS  PubMed  Google Scholar 

  93. Chambers RE, Homeida M, Hunter KR, Teague RH. Salivary carbamazepine concentrations. Lancet. 1977;1(8012):656–7. https://doi.org/10.1016/s0140-6736(77)92098-0.

    Article  CAS  PubMed  Google Scholar 

  94. MacKichan JJ, Duffner PK, Cohen ME. Salivary concentrations and plasma protein binding of carbamazepine and carbamazepine 10,11-epoxide in epileptic patients. Br J Clin Pharmacol. 1981;12:31–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Horning MG, Brown L, Nowlin J, Lertratanangkoon K, Kellaway P, Zion TE, et al. Use of saliva in therapeutic drug monitoring. Clin Chem. 1977;23:157–64.

    Article  CAS  PubMed  Google Scholar 

  96. Schultz L, Mahmoud SH. Is therapeutic drug monitoring of lacosamide needed in patients with seizures and epilepsy? Eur J Drug Metab Pharmacokinet. 2020;45(3):315–49. https://doi.org/10.1007/s13318-019-00601-8.

    Article  CAS  PubMed  Google Scholar 

  97. Mallayasamy SR, Arumugamn K, Jain T, Rajakannan T, Bhat K, Gurumadhavrao P, et al. A sensitive and selective HPLC method for estimation of lamotrigine in human plasma and saliva: application to plasma-saliva correlation in epileptic patients. Arzneimittelforschung. 2010;60:599–606.

  98. Jarvie D, Mahmoud SH. Therapeutic drug monitoring of levetiracetam in select populations. J Pharm Pharm Sci. 2018;21(1s):149s-s176. https://doi.org/10.18433/jpps30081.

    Article  PubMed  Google Scholar 

  99. Yamamoto Y, Usui N, Nishida T, Takahashi Y, Imai K, Kagawa Y, et al. Therapeutic drug monitoring for perampanel in Japanese epilepsy patients: influence of concomitant antiepileptic drugs. Ther Drug Monit. 2017;39:446–9. https://doi.org/10.1097/ftd.0000000000000416.

  100. Gidal BE, Ferry J, Majid O, Hussein Z. Concentration-effect relationships with perampanel in patients with pharmacoresistant partial-onset seizures. Epilepsia. 2013;54(8):1490–7. https://doi.org/10.1111/epi.12240.

    Article  CAS  PubMed  Google Scholar 

  101. Patsalos P. The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015;56:12–27.

    Article  CAS  PubMed  Google Scholar 

  102. Hassell TM. Epilepsy and the oral manifestations of phenytoin therapy. Monogr Oral Sci. 1981;9:1–205.

    CAS  PubMed  Google Scholar 

  103. Mucklow JC, Bending MR, Kahn GC, Dollery CT. Drug concentration in saliva. Clin Pharmacol Ther. 1978;24:563–70. https://doi.org/10.1002/cpt1978245563.

    Article  CAS  PubMed  Google Scholar 

  104. Friedman IM, Litt IF, Henson R, Holtzman D, Halverson D. Saliva phenobarbital and phenytoin concentrations in epileptic adolescents. J Pediatr. 1981;98:645–7. https://doi.org/10.1016/S0022-3476%2881%2980786-X.

    Article  CAS  PubMed  Google Scholar 

  105. Kamali F, Thomas SH. Effect of saliva flow rate on saliva phenytoin concentrations: implications for therapeutic monitoring. Eur J Clin Pharmacol. 1994;46:565–7.

    Article  CAS  PubMed  Google Scholar 

  106. Acheampong AA, Abbott FS, Orr JM, Ferguson SM, Burton RW. Use of hexadeuterated valproic acid and gas chromatography-mass spectrometry to determine the pharmacokinetics of valproic acid. J Pharm Sci. 1984;73(4):489–94. https://doi.org/10.1002/jps.2600730415.

    Article  CAS  PubMed  Google Scholar 

  107. Gorodischer R, Koren G. Salivary excretion of drugs in children: theoretical and practical issues in therapeutic drug monitoring. Dev Pharmacol Ther. 1992;19:161–77.

    Article  CAS  PubMed  Google Scholar 

  108. Melanson SE, Griggs D, Bixho I, Khaliq T, Flood JG. 7-Aminoclonazepam is superior to clonazepam for detection of clonazepam use in oral fluid by LC–MS/MS. Clin Chim Acta. 2016;455:128–33. https://doi.org/10.1016/j.cca.2016.01.027.

    Article  CAS  PubMed  Google Scholar 

  109. Vindenes V, Strand DH, Koksaeter P, Gjerde H. Detection of nitrobenzodiazepines and their 7-amino metabolites in oral fluid. J Anal Toxicol. 2016;40:310–2. https://doi.org/10.1093/jat/bkw020.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Janice Kung, Librarian at John W. Scott Library, for assisting with the keyword selection and search strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Hanafy Mahmoud.

Ethics declarations

Funding

There is no funding associated with this work.

Conflict of interest

The authors have no conflict of interest to declare.

Author contributions

SHM conceptualized the article. All the authors performed the literature search, data abstraction, and summarization. All the authors wrote and revised the manuscript.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, M., Parmiter, S. & Mahmoud, S.H. Feasibility of Using Oral Fluid for Therapeutic Drug Monitoring of Antiepileptic Drugs. Eur J Drug Metab Pharmacokinet 46, 205–223 (2021). https://doi.org/10.1007/s13318-020-00661-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-020-00661-1

Navigation