Log in

Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico

  • Report
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922–2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adger, W.N. 1996. Approaches to vulnerability to climate change. Global Environmental Change Working Paper. Centre for Social and Economic Research on the Global Environment, University of East Anglia and University College London.

  • Adger, W.N. 1999. Social vulnerability to climate change and extremes in coastal Vietnam. World Development 27: 249–269.

    Article  Google Scholar 

  • Adger, W.N., S. Agrawala, M.M. Mirza, C. Conde, K. O’Brien, et al. 2007. Assessment of adaptation practices, options, constraints and capacity. In Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. M.L. Parry, O.F. Canziani, J.P. Palutikof, C.E. Hanson, and P.J. van der Linden, 719–743. Cambridge: Cambridge University Press.

    Google Scholar 

  • Assunçao, J., and F. Chein Feres. 2009. Climate change, agricultural productivity and poverty. Mimeo.

  • Barradas, V.L., J. Cervantes-Pérez, R. Ramos-Palacios, et al. 2010. Meso-scale climate change in the central mountain region of Veracruz State, Mexico. In Tropical montane cloud forests: Science for conservation and management, ed. L.A. Bruijnzeel, F.N. Scatena, and L.S. Hamilton, 549–556. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barradas, V.L., L.M. Tapia-Vargas, and J. Cervantes-Pérez. 2011. Consecuencias del cambio climático en la ecofisiología vegetal de un bosque templado en Veracruz. Revista Mexicana de Ciencias Agrícolas 21: 183–194.

    Google Scholar 

  • Barva, H. 2011. Guía Técnica para el Cultivo del Café. San Jose: AGRIS, Instituto del Café de Costa Rica (ICAFE).

    Google Scholar 

  • Beaumont, L.J., A. Pitman, S. Perkins, N.E. Zimmermann, N.G. Yoccoz, and W. Thuiller. 2011. Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America 108: 2306–2311.

    Article  CAS  Google Scholar 

  • Butt, T.A., B.A. McCarl, J.A. Angerer, P.A. Dyke, and J.W. Stuth. 2005. The economic and food security implications of climate change in Mali. Climatic Change 68: 355–378.

    Article  Google Scholar 

  • Butt, T.A., B.A. McCarl, and A.O. Kergna. 2006. Policies for reducing agricultural sector vulnerability to climate change in Mali. Climate Policy 5: 583–598.

    Article  Google Scholar 

  • Challinor, A., T. Wheeler, C. Garforth, P. Craufurd, and A. Kassam. 2007. Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change 83: 381–399.

    Article  Google Scholar 

  • Cline, W.R. 2007. Global warming and agriculture: Impact estimates by country. Washington, D.C.: Center for Global Development, Peterson Institute for International Economics.

    Google Scholar 

  • Coumou, D., and S. Rahmstorf. 2012. A decade of weather extremes. Nature Climate Change 2: 491–496.

    Google Scholar 

  • CONAPO. 2001. Índices de desarrollo humano, 2000. México, D.F.: Consejo Nacional de Población, Secretaría de Gobernación.

    Google Scholar 

  • Cooley, H., E. Moore, M. Heberger, and L. Allen. 2012. Social vulnerability to climate change in California. USA: California Energy Commission, Pacific Institute.

    Google Scholar 

  • Cressie, N.A.C. 1990. The origins of kriging. Mathematical Geology 22: 239–252.

    Article  Google Scholar 

  • Cressie, N.A.C. 1991. Statistics for spatial data. New York: Wiley.

    Google Scholar 

  • Dai, A. 2011. Drought under global warming: A review. WIREs Climatic Change 2: 45–65.

    Article  Google Scholar 

  • ERP. 2011. Estudios Regionales para la Planeación. SEFLIPAN. COPLADEVER, Gobierno del Estado de Veracruz. Retrieved 9 July, 2014, from http://portal.veracruz.gob.mx/portal/page?_pageid=153,4198624,273_4996976&_dad=portal&_schema=PORTAL.

  • Esperón-Rodríguez, M., and V.L. Barradas. 2014a. Potential vulnerability to climate change of four tree species from the central mountain region of Veracruz, Mexico. Climate Research 60: 163–174. doi:10.3354/cr01231.

    Article  Google Scholar 

  • Esperón-Rodríguez, M., and V.L. Barradas. 2014b. Ecophysiological vulnerability to climate change: Water stress responses in four tree species from the central mountain region of Veracruz, Mexico. Regional Environmental Change. doi:10.1007/s10113-014-0624-x.

    Google Scholar 

  • Galmés, J., M.A. Conesa, M.J. Ochogavía, A.J. Perdomo, et al. 2011. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell and Environment 34: 245–260. doi:10.1111/j.1365-3040.2010.02239.x.

    Article  Google Scholar 

  • García-Franco, G.J., G. Castillo-Campos, K. Mehltreter, M.L. Martínez, and G. Vázquez. 2008. Composición florística de un bosque mesófilo del centro de Veracruz, México. Boletín de la Sociedad Botánica de México 83: 37–52.

    Google Scholar 

  • Giorgi, F., and L. Mearns. 2001. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. Journal of Climate 15: 1141–1158.

    Article  Google Scholar 

  • Gómez-Pompa, A. 1978. Ecología de la vegetación del estado de Veracruz. México D.F.: CECSA.

    Google Scholar 

  • Granados, A. 2012. Estimate Social Vulnerability Index to climate change in Mexico. Population Association of America 2012 annual meeting. San Francisco, CA, 3–5 May, 2012.

  • Handmer, J.W., S. Dovers, and T.E. Downing. 1999. Societal vulnerability to climate change and variability. Mitigation and Adaptation Strategies for Global Change 4: 267–281.

    Article  Google Scholar 

  • Hewitt, K. 1997. Regions of risk: A geographical introduction to disasters. London: Addison Wesley Longman.

    Google Scholar 

  • Holt, R.D. 1990. The microevolutionary consequences of climate change. Trends in Ecology & Evolution 5: 311–315.

    Article  CAS  Google Scholar 

  • Houghton, J., Y. Ding, D. Griggs, M. Noguer, P. van der Linden, X. Da, K. Maskell, and C. Johnson. 2001. Climate change 2001: The scientific basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • INEGI. 2013. Uso del suelo y vegetación. Retrieved 1 June, 2014, from http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/default.aspx.

  • IPCC. 2014. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Changes to the Underlying Scientific/Technical Assessment, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. **a, V. Bex, and P.M. Midgley. Cambridge: Cambridge University Press.

  • Jones, H.G., and J.E. Corlett. 1992. Current topics in drought physiology. Journal of Agricultural Science 119: 291–296.

    Article  Google Scholar 

  • Karmalkar, A.V., R.S. Bradley, and H.F. Diaz. 2011. Climate change in Central America and Mexico: Regional climate model validation and climate change projections. Climate Dynamics 37: 605–629. doi:10.1007/s00382-011-1099-9.

    Article  Google Scholar 

  • Kendall, M.G. 1975. Rank correlation methods, 4th ed. London: Charles Griffin.

    Google Scholar 

  • Kramer, P.J. 1980. Drought stress and the origin of adaptation. In Adaptation of plants to water and high temperature stress, ed. N.C. Turner, and P.J. Kramer, 7–20. New York: Wiley.

    Google Scholar 

  • Lindner, M., M. Maroschek, S. Netherer, A. Kremer, et al. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698–709. doi:10.1016/j.foreco.2009.09.023.

    Article  Google Scholar 

  • Lynn, K., K. MacKendrick, and E.M. Donoghue. 2011. Social vulnerability and climate change: Synthesis of literature. Gen. Tech. Rep. PNW-GTR-838, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

  • Mann, H.B. 1945. Non-parametric tests against trend. Econometrica 13: 163–171.

    Article  Google Scholar 

  • McNeely, J.A. 1995. How traditional agro-ecosystems can contribute to conserving biodiversity. In Conserving biodiversity outside protected areas, ed. P. Halladay, and D.A. Gilmour, 20–40. Gland: IUCN.

    Google Scholar 

  • Melillo, J.M., I.C. Prentice, G.D. Farquhar, E.D. Schulze, and O.E. Sala. 1995. Terrestrial biotic responses to environmental change and feedbacks to climate. In Climate change 1995: The science of climate change, ed. J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, 449–481. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mendelsohn, R., A. Dinar, and L. Williams. 2006. The distributional impact of climate change on rich and poor countries. Environment and Development Economics 11: 159–178.

    Article  Google Scholar 

  • Met Office, et al. 2011. Climate: Observations, projections and impacts: Mexico. Exeter: Met Office.

    Google Scholar 

  • Min, S.-K., X. Zhang, F.W. Zwiers, and G.C. Hegerl. 2011. Human contribution to more-intense precipitation extremes. Nature 470: 378–381. doi:10.1038/nature09763.

    Article  CAS  Google Scholar 

  • Moser, C. 1998. The asset vulnerability framework: Reassessing urban poverty reduction strategies. World Development 26: 1–19.

    Article  Google Scholar 

  • Nasrallah, H.A., A.J. Brazel, and R.C. Balling. 1990. Analysis of the Kuwait City urban heat island. International Journal of Climatology 10: 401–405.

    Article  Google Scholar 

  • Olguín, J., G. Sánchez-Galván, and G. Vidal. 2011. La biodiversidad del estado y algunas de sus amenazas. La producción de café como amenaza a la biodiversidad. In La biodiversidad en Veracruz: Estudio de Estado, ed. A. Cruz Angón, 391–425. Xalapa: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, SECCIÓN V, Universidad Veracruzana, Instituto de Ecología, A.C.

    Google Scholar 

  • Parry, M., and T.R. Carter. 1998. Climate impact assessment and adaptation assessment. London: Earthscan Publications.

    Google Scholar 

  • Patz, R., D. Campbell-Lendrum, T. Holloway, and J.A. Foley. 2005. Impact of regional climate change on human health. Nature 438: 310–317. doi:10.1038/nature04188.

    Article  CAS  Google Scholar 

  • Pimentel, D., U. Stachow, D.A. Takacs, H.W. Brubaker, et al. 1992. Conserving biological diversity in agricultural/forestry systems. BioScience 42: 354–362.

    Article  Google Scholar 

  • Reilly, J., and D. Schimmelpfennig. 1999. Agricultural impact assessment, vulnerability, and the scope for adaptation. Climatic Change 43: 745–788.

    Article  Google Scholar 

  • Ruiz, C.J.A.,G.G. González, A.I.J. Ortiz, T.C. Flores, et al. 1999. Requerimientos Agroecológicos de Cultivos. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigación Regional del Pacífico Centro, Campo Experimental Centro de Jalisco. Libro Técnico Núm. 3. Conexión Gráfica, Guadalajara, Jalisco, México.

  • Schröter, D., W. Cramer, R. Leemans, I.C. Prentice, A.M. Araújo, et al. 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310: 1333–1337.

    Article  Google Scholar 

  • SEMARNAT-SHCP. 2009. La economía del cambio climático en México. México, DF: Secretaría de Medio Ambiente y Recursos Naturales-Secretaría de Hacienda y Crédito Público, SEMARNAT-SHCP.

    Google Scholar 

  • Seneviratne, S.I., N. Nicholls, D. Easterlingm, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang. 2012. Changes in climate extremes and their impacts on the natural physical environment. In Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC SREX Report), ed. C.B. Field, V. Barros, T.F. Stocker, et al., 109–230. Cambridge: Cambridge University Press.

  • Subirós-Ruiz, F. 1995. Cultivo de la caña de azúcar. San Jose: EUNED.

    Google Scholar 

  • United Nations. 2004. Living with risk: A global review of disaster reduction initiatives. Geneva: United Nations International Strategy for Disaster Reduction.

    Google Scholar 

  • Watson, R.T., M.C. Zinyoera, and R.H. Moss. 1996. Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific-technical analysis. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Watson, R.T., M.C. Zinyoera, and R.H. Moss. 1998. The regional impacts of climate change: An assessment of vulnerability. A Special Report of IPCC Working Group II. Cambridge: Cambridge University Press.

  • Zwiers, F., X. Zhang, and Y. Feng. 2011. Anthropogenic influence on long return period daily temperature extremes at regional scales. Journal of Climate 24: 881–892.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Alejandro Morales, Alfredo González Zamora, and Juan Pablo Ruíz Cordova for their help. We also thank to Dr. Abraham Granados for the data and information provided. And a special thanks to Dr. Mark Olson for his support and advice. The first author thanks the Postgraduate School of Geography of the Universidad Nacional Autónoma de México and CONACyT-México (No. 209767) for the received grants. Also, we thank the anonymous reviewers for their critical observations and thoughtful contributions for improving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor L. Barradas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esperón-Rodríguez, M., Bonifacio-Bautista, M. & Barradas, V.L. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico. Ambio 45, 146–160 (2016). https://doi.org/10.1007/s13280-015-0690-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-015-0690-4

Keywords

Navigation