Log in

A pilot study evaluating genetic alterations that drive tobacco- and betel quid-associated oral cancer in Northeast India

  • Research Article
  • Published:
Tumor Biology

Abstract

The susceptibility of an individual to oral cancer is mediated by genetic factors and carcinogen-exposure behaviors such as betel quid chewing, tobacco use, and alcohol consumption. This pilot study was aimed to identify the genetic alteration in 100 bp upstream and downstream flanking regions in addition to the exonic regions of 169 cancer-associated genes by using Next Generation sequencing with aim to elucidate the molecular pathogenesis of tobacco- and betel quid-associated oral cancer of Northeast India. To understand the role of chemical compounds present in tobacco and betel quid associated with the progression of oral cancer, single nucleotide polymorphisms (SNPs) and insertion and deletion (Indels) found in this study were analyzed for their association with chemical compounds found in tobacco and betel quid using Comparative Toxogenomic Database. Genes (AR, BRCA1, IL8, and TP53) with novel SNP were found to be associated with arecoline which is the major component of areca nut. Genes (BARD1, BRCA2, CCND2, IGF1R, MSH6, and RASSF1) with novel deletion and genes (APC, BRMS1, CDK2AP1, CDKN2B, GAS1, IGF1R, and RB1) with novel insertion were found to be associated with aflatoxin B1 which is produced by fermented areca nut. Genes (ADH6, APC, AR, BARD1, BRMS1, CDKN1A, E2F1, FGFR4, FLNC, HRAS, IGF1R, IL12B, IL8, NBL1, STAT5B, and TP53) with novel SNP were found to be associated with aflatoxin B1. Genes (ATM, BRCA1, CDKN1A, EGFR, IL8, and TP53) with novel SNP were found to be associated with tobacco specific nitrosamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

OSCC:

Oral squamous cell carcinoma

Indels:

Short insertion and deletions

SNP:

Single nucleotide polymorphism

NGS:

Next generation sequencing

References

  1. Soya SS, Vinod T, Reddy KS, Gopalakrishnan S, Adithan C. Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer. 2007;43:2698–706.

    Article  CAS  PubMed  Google Scholar 

  2. Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis. 2004;19:251–62.

    Article  CAS  PubMed  Google Scholar 

  3. Bhattacharjee A, Chakraborty A, Purkaystha P. Prevalence of head and neck cancers in the north east—an institutional study. Indian J Otolaryngol Head Neck Surg. 2006;58:15–9.

    PubMed Central  PubMed  Google Scholar 

  4. Mondal P, Datta S, Maiti GP, Baral A, Jha GN, Panda CK, et al. Comprehensive SNP scan of DNA repair and DNA damage response genes reveal multiple susceptibility loci conferring risk to tobacco associated leukoplakia and oral cancer. PLoS One. 2013;8:e56952.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mondal R, Ghosh SK, Choudhury JH, Seram A, Sinha K, Hussain M, et al. Mitochondrial DNA copy number and risk of oral cancer: a report from Northeast India. PLoS One. 2013;8:e57771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chattopadhyay I, Kapur S, Purkayastha J, Phukan R, Kataki A, Mahanta J, et al. Gene expression profile of esophageal cancer in North East India by cDNA microarray analysis. World J Gastroenterol. 2007;13:1438–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Phukan RK, Ali MS, Chetia CK, Mahanta J. Betel nut and tobacco chewing; potential risk factors of cancer of oesophagus in Assam. India Br J Cancer. 2001;85:661–7.

    Article  CAS  PubMed  Google Scholar 

  8. Strickland SS, Veena GV, Houghton PJ, Stanford SC, Kurpad AV. Areca nut, energy metabolism and hunger in Asian men. Ann Hum Biol. 2003;30:26–52.

    Article  CAS  PubMed  Google Scholar 

  9. Chiang SL, Jiang SS, Wang YJ, Chiang HC, Chen PH, Tu HP, et al. Characterization of arecoline-induced effects on cytotoxicity in normal human gingival fibroblasts by global gene expression profiling. Toxicol Sci. 2007;100:66–74.

    Article  CAS  PubMed  Google Scholar 

  10. Chien MH, Yang JS, Chu YH, Lin CH, Wei LH, Yang SF, et al. Impacts of CA9 gene polymorphisms and environmental factors on oral-cancer susceptibility and clinicopathologic characteristics in Taiwan. PLoS One. 2012;7:e51051.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ambatipudi S, Gerstung M, Pandey M, Samant T, Patil A, Kane S, et al. Genome-wide expression and copy number analysis identifies driver genes in gingivobuccal cancers. Genes Chromosom Cancer. 2012;51:161–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ambatipudi S, Gerstung M, Gowda R, Pai P, Borges AM, Schäffer AA, et al. Genomic profiling of advanced-stage oral cancers reveals chromosome 11q alterations as markers of poor clinical outcome. PLoS One. 2011;6:e17250.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sailasree R, Abhilash A, Sathyan KM, Nalinakumari KR, Thomas S, Kannan S. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17:414–20.

    Article  CAS  PubMed  Google Scholar 

  14. India Project Team of the International Cancer Genome Consortium. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun. 2013;4:2873.

    Google Scholar 

  15. Zhang Q, Zhang J, ** H, Sheng S. Whole transcriptome sequencing identifies tumor-specific mutations in human oral squamous cell carcinoma. BMC Med Genom. 2013;6:28.

    Article  CAS  Google Scholar 

  16. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest. 2003;111:81–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chaudhry IS, El-Meanawy A, Khiyami A, Tomashefski JF Jr, Machekano RN, Kass L. Short-term exposure to tobacco toxins alters expression of multiple proliferation gene markers in primary human bronchial epithelial cell cultures. J Oncol. 2011; 208563.

  18. Proulx LI, Gaudreault M, Turmel V, Augusto LA, Castonguay A, Bissonnette EY. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a component of tobacco smoke, modulates mediator release from human bronchial and alveolar epithelial cells. Clin Exp Immunol. 2005;140:46–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Segal-Raz H, Mass G, Baranes-Bachar K, Lerenthal Y, Wang SY, Chung YM, et al. ATM-mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA double-strand break repair. EMBO Rep. 2011;12:713–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Woodbine L, Brunton H, Goodarzi AA, Shibata A, Jeggo PA. Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res. 2011;39:6986–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dombernowsky SL, Weischer M, Allin KH, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. Risk of cancer by ATM missense mutations in the general population. J Clin Oncol. 2008;26:3057–62.

    Article  CAS  PubMed  Google Scholar 

  22. Lu S, Shen K, Wang Y, Santner SJ, Chen J, Brooks SC, et al. Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors. Carcinogenesis. 2006;27:848–55.

    Article  CAS  PubMed  Google Scholar 

  23. Ogmundsdóttir HM, Hilmarsdóttir H, Björnsson J, Holbrook WP. Longitudinal study of TP53 mutations in eight patients with potentially malignant oral mucosal disorders. Oral Pathol Med. 2009;38:716–21.

    Article  Google Scholar 

  24. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 2006;127:1015–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nishikawa Y, Miyazaki T, Nakashiro K, Yamagata H, Isokane M, Goda H, et al. Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of β-catenin. Oncol Rep. 2011;26:587–92.

    CAS  PubMed  Google Scholar 

  26. Matsui S, Utani A, Takahashi K, Mukoyama Y, Miyachi Y, Matsuyoshi N. Human Fat2 is localized at immature adherens junctions in epidermal keratinocytes. J Dermatol Sci. 2007;48:233–6.

    Article  CAS  PubMed  Google Scholar 

  27. Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T, et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene. 2007;26:5300–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fu YP, Edvardsen H, Kaushiva A, Arhancet JP, Howe TM, Kohaar I, et al. NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations. Mol Cancer. 2010;9:113.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chu D, Zheng J, Wang W, Zhao Q, Li Y, Li J, et al. Notch2 expression is decreased in colorectal cancer and related to tumor differentiation status. Ann Surg Oncol. 2009;16:3259–66.

    Article  PubMed  Google Scholar 

  30. Boulay JL, Miserez AR, Zweifel C, Sivasankaran B, Kana V, Ghaffari A, et al. Loss of NOTCH2 positively predicts survival in subgroups of human glial brain tumors. PLoS One. 2007;2:e576.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lo Muzio L, Campisi G, Farina A, Rubini C, Pannone G, Serpico R, et al. P-cadherin expression and survival rate in oral squamous cell carcinoma: an immunohistochemical study. BMC Cancer. 2005;5:63.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Au KS, Ward CH, Northrup H. Tuberous sclerosis complex: disease modifiers and treatments. Curr Opin Pediatr. 2008;20:628–33.

    Article  PubMed  Google Scholar 

  33. Inoki K. Role of TSC-mTOR pathway in diabetic nephropathy. Diabetes Res Clin Pract. 2008;82:S59–62.

    Article  CAS  PubMed  Google Scholar 

  34. Adachi H, Igawa M, Shiina H, Urakami S, Shigeno K, Hino O. Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol. 2003;170:601–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bauer CM, Ray AM, Halstead-Nussloch BA, Dekker RG, Raymond VM, Gruber SB, et al. Hereditary prostate cancer as a feature of Lynch syndrome. Fam Cancer. 2011;10:37–42.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lim EJ, Leung C, Pitman A, Stella DL, Brown G, Slattery M, et al. Magnetic resonance colonography for colorectal cancer screening in patients with Lynch syndrome gene mutation. Fam Cancer. 2010;9:555–61.

    Article  PubMed  Google Scholar 

  37. Friedrich RE, Hagel C, Bartel-Friedrich S. Insulin-like growth factor-1 receptor (IGF-1R) in primary and metastatic undifferentiated carcinoma of the head and neck: a possible target of immunotherapy. Anticancer Res. 2010;30:1641–3.

    PubMed  Google Scholar 

  38. Wang Y, Azuma Y, Moore D, Osheroff N, Neufeld KL. Interaction between tumor suppressor adenomatous polyposis coli and topoisomerase IIalpha: implication for the G2/M transition. Mol Biol Cell. 2008;19:4076–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Qian J, Sarnaik AA, Bonney TM, Keirsey J, Combs KA, Steigerwald K, et al. The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology. 2008;135:152–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tighe A, Johnson VL, Taylor SS. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J Cell Sci. 2004;117:6339–53.

    Article  CAS  PubMed  Google Scholar 

  41. Rivero ER, Horta MC, Silva Guerra EN, Ferraz AR, Nunes FD. Loss of heterozygosity of the APC gene in oral squamous cell carcinoma. Pathol Res Pract. 2008;204:793–7.

    Article  CAS  PubMed  Google Scholar 

  42. Chien MH, Liu YF, Hsin CH, Lin CH, Shih CH, Yang SF, et al. Impact of VEGF-C gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan. PLoS One. 2013;8(4):e60283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lin CW, Chuang CY, Tang CH, Chang JL, Lee LM, Lee WJ, et al. Combined effects of icam-1 single-nucleotide polymorphisms and environmental carcinogens on oral cancer susceptibility and clinicopathologic development. PLoS One. 2013;8(9):e72940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Liu CM, Yeh CJ, Yu CC, Chou MY, Lin CH, Wei LH, et al. Impact of interleukin-8 gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan. Oral Dis. 2012;18:307–14.

    Article  PubMed  Google Scholar 

  45. Jamaly S, Khanehkenari MR, Rao R, Patil G, Thakur S, Ramaswamy P, et al. Relationship between p53 overexpression, human papillomavirus infection, and lifestyle in Indian patients with head and neck cancers. Tumour Biol. 2012;33:543–50.

    Article  CAS  PubMed  Google Scholar 

  46. Lee CH, Wong TS, Chan JY, Lu SC, Lin P, Cheng AJ, et al. Epigenetic regulation of the X-linked tumour suppressors BEX1 and LDOC1 in oral squamous cell carcinoma. J Pathol. 2013;230:298–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Genotypic Technology (P) Ltd., Bangalore. The authors would also like to thank the Indian Council of Medical Research for their financial support.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujala Kapur.

Additional information

Dhirendra Singh Yadav and Indranil Chattopadhyay have equal contribution to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 200 kb)

Table S2

(DOC 47 kb)

Table S3

(XLS 38 kb)

Table S4

(XLS 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D.S., Chattopadhyay, I., Verma, A. et al. A pilot study evaluating genetic alterations that drive tobacco- and betel quid-associated oral cancer in Northeast India. Tumor Biol. 35, 9317–9330 (2014). https://doi.org/10.1007/s13277-014-2222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2222-4

Keywords

Navigation