Log in

Association between TP53 Arg72Pro polymorphism and thyroid carcinoma risk

  • Research Article
  • Published:
Tumor Biology

Abstract

TP53 Arg72Pro polymorphism has been proposed to have some effects on host’s susceptibility to cancer. Several studies were published to assess the association between TP53 Arg72Pro polymorphism and thyroid carcinoma, but they reported controversial results. We performed a systemic review and meta-analysis to assess the association between TP53 Arg72Pro polymorphism and thyroid carcinoma. Odds ratio (OR) with 95 % confidence interval (95 % CI) was used to assess the association. Fourteen individual studies with 3,483 subjects were finally included into the meta-analysis. Overall, there was an obvious association between TP53 Arg72Pro polymorphism and thyroid carcinoma under the recessive model (ProPro vs. ArgArg/ArgPro, OR = 2.02, 95 % CI 1.13 to 3.62, P = 0.02). Subgroup analysis by race showed that TP53 Arg72Pro polymorphism was associated with thyroid carcinoma in Caucasians (ProPro vs. ArgArg/ArgPro, OR = 2.31, 95 % CI 1.08 to 4.93, P = 0.03). Subgroup analysis by histological type showed that TP53 Arg72Pro polymorphism was not associated with a risk of different types of thyroid carcinoma. In summary, the meta-analysis suggests that TP53 Arg72Pro polymorphism is associated with thyroid carcinoma risk in Caucasians. Besides, more studies with large sample size are needed to further assess the associations above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Carlomagno F, Santoro M. Thyroid cancer in 2010: a roadmap for targeted therapies. Nat Rev Endocrinol. 2011;7:65–7.

    Article  PubMed  CAS  Google Scholar 

  4. Gild ML, Bullock M, Robinson BG, Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol. 2011;7:617–24.

    Article  PubMed  CAS  Google Scholar 

  5. Imaizumi M, Usa T, Tominaga T, Neriishi K, Akahoshi M, Nakashima E, et al. Radiation dose–response relationships for thyroid nodules and autoimmune thyroid diseases in Hiroshima and Nagasaki atomic bomb survivors 55–58 years after radiation exposure. JAMA. 2006;295:1011–22.

    Article  PubMed  CAS  Google Scholar 

  6. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.

    Article  PubMed  CAS  Google Scholar 

  7. Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet. 2009;41:460–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Perez L, Schiavi F, Leskela S, et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet. 2009;5:e1000637.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Collavin L, Lunardi A, Del Sal G. P53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 2010;17:901–11.

    Article  PubMed  CAS  Google Scholar 

  10. Meek DW. Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer. 2009;9:714–23.

    PubMed  CAS  Google Scholar 

  11. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137:609–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Muller PA, Vousden KH, Norman JC. P53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Barbieri RB, Bufalo NE, Cunha LL, Assumpcao LV, Maciel RM, Cerutti JM, et al. Genes of detoxification are important modulators of hereditary medullary thyroid carcinoma risk. Clin Endocrinol (Oxf). 2013;79:288–93.

    Article  CAS  Google Scholar 

  14. Barbieri RB, Bufalo NE, Secolin R, Silva AC, Assumpcao LV, Maciel RM, et al. Evidence that polymorphisms in detoxification genes modulate the susceptibility for sporadic medullary thyroid carcinoma. Eur J Endocrinol. 2012;166:241–5.

    Article  PubMed  CAS  Google Scholar 

  15. Reis AA, Silva DM, Curado MP, da Cruz AD. Involvement of CYP1A1, GST, 72TP53 polymorphisms in the pathogenesis of thyroid nodules. Genet Mol Res. 2010;9:2222–9.

    Article  PubMed  CAS  Google Scholar 

  16. Akulevich NM, Saenko VA, Rogounovitch TI, Drozd VM, Lushnikov EF, Ivanov VK, et al. Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocr Relat Cancer. 2009;16:491–503.

    Article  PubMed  CAS  Google Scholar 

  17. Siraj AK, Al-Rasheed M, Ibrahim M, Siddiqui K, Al-Dayel F, Al-Sanea O, et al. RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. J Endocrinol Invest. 2008;31:893–9.

    Article  PubMed  CAS  Google Scholar 

  18. Aral C, Caglayan S, Ozisik G, Massoumilary S, Sonmez O, Akkiprik M, et al. The association of p53 codon 72 polymorphism with thyroid cancer in Turkish patients. Marmara Med J. 2007;20:1–5.

    Google Scholar 

  19. Rogounovitch TI, Saenko VA, Ashizawa K, Sedliarou IA, Namba H, Abrosimov AY, et al. TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. Oncol Rep. 2006;15:949–56.

    PubMed  CAS  Google Scholar 

  20. Bufalo NE, Leite JL, Guilhen AC, Morari EC, Granja F, Assumpcao LV, et al. Smoking and susceptibility to thyroid cancer: an inverse association with cyp1a1 allelic variants. Endocr Relat Cancer. 2006;13:1185–93.

    Article  PubMed  CAS  Google Scholar 

  21. Granja F, Morari J, Morari EC, Correa LA, Assumpcao LV, Ward LS. Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Cancer Lett. 2004;210:151–7.

    Article  PubMed  CAS  Google Scholar 

  22. Boltze C, Roessner A, Landt O, Szibor R, Peters B, Schneider-Stock R. Homozygous proline at codon 72 of p53 as a potential risk factor favoring the development of undifferentiated thyroid carcinoma. Int J Oncol. 2002;21:1151–4.

    PubMed  CAS  Google Scholar 

  23. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.

    Article  Google Scholar 

  24. Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  25. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    PubMed  CAS  Google Scholar 

  26. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  PubMed  CAS  Google Scholar 

  27. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Polager S, Ginsberg D. P53 and e2f: partners in life and death. Nat Rev Cancer. 2009;9:738–48.

    Article  PubMed  CAS  Google Scholar 

  29. Benard J, Douc-Rasy S, Ahomadegbe JC. TP53 family members and human cancers. Hum Mutat. 2003;21:182–91.

    Article  PubMed  CAS  Google Scholar 

  30. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65.

    Article  PubMed  CAS  Google Scholar 

  31. Francisco G, Menezes PR, Eluf-Neto J, Chammas R. Arg72pro tp53 polymorphism and cancer susceptibility: a comprehensive meta-analysis of 302 case–control studies. Int J Cancer. 2011;129:920–30.

    Article  PubMed  CAS  Google Scholar 

  32. Villanueva A, Hoshida Y. Depicting the role of tp53 in hepatocellular carcinoma progression. J Hepatol. 2011;55:724–5.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Gang Wang.

Additional information

Fang Wang, Peng Wang, and Bin Wang contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Wang, P., Wang, B. et al. Association between TP53 Arg72Pro polymorphism and thyroid carcinoma risk. Tumor Biol. 35, 2723–2728 (2014). https://doi.org/10.1007/s13277-013-1359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1359-x

Keywords

Navigation