Log in

Quantitative analysis of multiple gene promoter methylation in Korean non-small cell lung cancer patients and its association study with cancer risk factor and survival

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

The methylation profiles of nine cancer-associated genes were compared with the percent of methylation ratio (PMR) using quantitative methylation RT-PCR in 16 normal lung tissue samples and 80 non-small cell lung cancer (NSCLC) tissues samples. The methylation of nine cancer-associated genes showed a significant increase in tumors compared to matched normal lung tissues, and the level of gene methylation in NSCLC patients containing both adjacent nontumor and tumor tissues showed a significant increase compared to normal lung tissues (P<0.05). The hypermethylation of the p16, RASSF1A, and CYP1B1 genes were correlated with age at diagnosis. APC, RASSF1A, and CYP1B1gene hypermethylation was correlated with smoking status according to a cut-off of PMR values of 10. TWIST1 gene hypermethylation was correlated with histologic types. Kaplan-Meier survival analysis using the methylation status of nine genes demonstrated that only p16 gene hypermethylation was associated with the survival period. Our results of this study provide evidence that hypermethylation of cancer-associated genes containing a tumor suppressor may serve as an early detection marker for lung cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA. Cancer J Clin 55:74–108 (2005).

    Article  Google Scholar 

  2. Pfeifer, G. P. & Rauch, T. A. DNA methylation patterns in lung carcinomas. Semin Cancer Biol 19:181–187 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Belinsky, S. A., Schiller, J. H. & Stidley, C. A. DNA methylation biomarkers to assess therapy and chemoprevention for non-small cell lung cancer. Nutr Rev 1:S24–26 (2008).

    Article  Google Scholar 

  4. Paulsen, M. & Ferguson-Smith, A. C. DNA methylation in genomic imprinting, development and disease. J Pathol 195:97–110 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Zöchbauer-Müller, S. et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61:249–255 (2001).

    PubMed  Google Scholar 

  6. Toyooka, S. et al. Smoke exposure, histologic type and geography-related differences in the methylation pro-files of non-small cell lung cancer. Int J Cancer 103:153–160 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Yanagawa, N. et al. Promoter hypermethylation of tumor suppressor and tumor-related genes in non-small cell lung cancers. Cancer Sci 94:589–592 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Dammann, R. et al. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer 41:1223–1236 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Kim, Y. T. et al. Prognostic implication of aberrant promoter hypermethylation of CpG islands in adenocarcinoma of the lung. J Thorac Cardiovasc Surg 130:1378 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Merlo, A. et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Toyooka, K. O. et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61:4556–4560 (2001).

    PubMed  CAS  Google Scholar 

  12. Belinsky, S. A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4:707–717 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594 (2008).

    PubMed  Google Scholar 

  14. Lin, Q. et al. RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China. J Cancer Res Clin Oncol 35:1675–1684 (2009).

    Article  Google Scholar 

  15. Yoshino, I. & Maehara, Y. Impact of smoking status on the biological behavior of lung cancer. Surg Today 37:725–734 (2007).

    Article  PubMed  Google Scholar 

  16. Feng, Q. et al. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev 17:645–654 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Risch, A. & Plass, C. Lung cancer epigenetics and genetics. Int J Cancer 123:1–7 (2008).

    Article  PubMed  CAS  Google Scholar 

  18. Virmani, A. K. et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7:1998–2004 (2001).

    PubMed  CAS  Google Scholar 

  19. **, M. et al. Different histological types of non-small cell lung cancer have distinct folate and DNA methylation levels. Cancer Sci 100:2325–2330 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Brabender, J. et al. Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene 20:3528–3532 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. Belinsky, S. A. et al. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 95:11891–11896 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. Kashiwabara, K., Oyama, T., Sano, T., Fukuda, T. & Nakajima, T. Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. Int J Cancer 79:215–220 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. Burbee, D. G. et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. Otterson, G. A., Khleif, S. N., Chen, W., Coxon, A. B. & Kaye, F. J. CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene 11:1211–1216 (1995).

    PubMed  CAS  Google Scholar 

  25. Soria, J. C. et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res 62:351–355 (2002).

    PubMed  CAS  Google Scholar 

  26. Buckingham, L. et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients. Int J Cancer 126:1630–1639 (2010).

    PubMed  CAS  Google Scholar 

  27. Yoshino, M. et al. Promoter hypermethylation of the p16 and Wif-1 genes as an independent prognostic marker in stage IA non-small cell lung cancers. Int J Oncol 35:1201–1209 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. El-Osta, A., Kantharidis, P., Zalcberg, J. R. & Wolffe, A. P. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol 22:1844–1857 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. Tada, Y. et al. MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res 6:4618–4627 (2000).

    PubMed  CAS  Google Scholar 

  30. Takanishi, K., Miyazaki, M., Ohtsuka, M. & Nakajima, N. Inverse relationship between P-glycoprotein expression and its proliferative activity in hepatocellular carcinoma. Oncology 54:231–237 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Gagnon, J. F., Bernard, O., Villeneuve, L., Tetu, B. & Guillemette, C. Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer. Clin Cancer Res 12:1850–1858 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. Murray, G. I. et al. Tumorspecific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031 (1997).

    PubMed  CAS  Google Scholar 

  33. McFadyen, M. C. et al. Cytochrome P450 CYP1B1protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62:207–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Kang, G. H. et al. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 88:161–170 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. Tokizane, T. et al. Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 11:5793–5801 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Su, J. M., Lin, P., Wang, C. K. & Chang, H. Overexpression of cytochrome P450 1B1 in advanced nonsmall cell lung cancer: a potential therapeutic target. Anticancer Res 29:509–515 (2009).

    PubMed  Google Scholar 

  37. Gu, J. et al. Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer. Clin Cancer Res 12:7329–7338 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Panguluri, R. C. et al. COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 25:961–966 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Friedrich, M. G. et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin Cancer Res 10:7457–7465 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. Ogino, S. et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8:209–217 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. Eads, C. A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seoub Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HJ., Kim, EJ., Lee, KM. et al. Quantitative analysis of multiple gene promoter methylation in Korean non-small cell lung cancer patients and its association study with cancer risk factor and survival. Mol. Cell. Toxicol. 8, 25–34 (2012). https://doi.org/10.1007/s13273-012-0004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0004-x

Keywords

Navigation