Log in

Modeling and control of lift offset coaxial and tiltrotor rotorcraft

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The US Department of Defense has established an initiative to develop a family of next-generation vertical lift aircraft that will fly farther, faster, and more efficiently than the current fleet of rotorcraft. To accomplish these goals, advanced rotorcraft configurations beyond the single main rotor/tail rotor design must be considered. Two advanced configurations currently being flight tested are a lift offset coaxial rotorcraft with a pusher propeller and a tiltrotor. The US Army Aviation Development Directorate has developed generic, high-fidelity flight-dynamics models of these two configurations to provide the government with independent control-system design, handling-qualities analysis, and simulation research capabilities for these types of aircraft. This paper describes the modeling approach used and provides model trim data, linearized stability and control derivatives, and eigenvalues as a function of airspeed. In addition, control allocation for both configurations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Abbreviations

\(\varDelta \theta ^\prime _{1c}\) :

Differential phased lateral cyclic (\(^{\circ }\))

\(\varDelta \theta ^\prime _{1s}\) :

Differential phased longitudinal cyclic (\(^{\circ }\))

\(\varDelta \theta _0\) :

Differential collective (\(^{\circ }\))

\(\delta _{\mathrm {a}}\) :

Aileron deflection (\(^{\circ }\))

\(\delta _{\mathrm {e}}\) :

Elevator deflection (\(^{\circ }\))

\(\delta _{\mathrm {nac}}\) :

Nacelle angle (\(^{\circ }\))

\(\delta _{\mathrm {r}}\) :

Rudder deflection (\(^{\circ }\))

\(\varDelta _{\mathrm {SP}}\) :

Swashplate control phasing angle (\(^{\circ }\))

\(\rho\) :

Air density (slugs/ft\(^3\))

\(\theta\) :

Pitch attitude (\(^{\circ }\))

\(\theta ^\prime _{1c}\) :

Symmetric (or single rotor) phased lateral cyclic (\(^{\circ }\))

\(\theta ^\prime _{1s}\) :

Symmetric (or single rotor) phased longitudinal cyclic (\(^{\circ }\))

\(\theta _0\) :

Symmetric collective (\(^{\circ }\))

\(\theta _{0_{\mathrm {PP}}}\) :

Pusher propeller collective (\(^{\circ }\))

\(\theta _{1c_{\mathrm {PP}}}\) :

Pusher propeller monocyclic (\(^{\circ }\))

\(\varphi\) :

Frequency response phase angle (\(^{\circ }\))

\(L_p\) :

Example of dimensional stability derivative, \(L_p \equiv \partial L / \partial p\)

\(L_{\delta _{\mathrm {a}}}\) :

Example of dimensional control derivative, \(L_{\delta _\mathrm {a}} \equiv \partial L / \partial \delta _\mathrm {a}\)

P :

Power (hp)

V :

Total true airspeed (kts)

References

  1. Anon.: Joint multi-role technology demonstrator phase 1 broad area anouncement (2013)

  2. Anon.: Model performance specification for the joint multi-role, Rev 6 (2013)

  3. Juhasz, O., Celi, R., Ivler, C.M., Tischler, M.B., Berger, T.: Flight dynamic simulation modeling of large flexible tiltrotor aircraft. In: American Helicopter Society 68th Annual Forum Proceedings, Fort Worth (2012)

  4. Celi, R.: HeliUM 2 flight dynamic simulation model: developments, technical concepts, and applications. In: American Helicopter Society 71st Annual Forum Proceedings. Virginia Beach (2015)

  5. Fegely, C., **n, H., Juhasz, O., Tischler, M.B.: Flight dynamics and control modeling with system identification validation of the Sikorsky X2 technology demonstrator. In: American Helicopter Society 72nd Annual Forum Proceedings, West Palm Beach (2016)

  6. Berger, T., Blanken, C.L., Tischler, M.B., Horn, J.F.: Flight control design and simulation handling qualities assessment of high-speed rotorcraft. In: Vertical Flight Society 75th Annual Forum Proceedings, Philadelphia (2019)

  7. Tobias, E.L., Tischler, M.B.: A model stitching architecture for continuous full flight-envelope simulation of fixed-wing aircraft and rotorcraft from discrete-point linear models, U.S. Army AMRDEC Special Report RDMR-AF-16-01 (2016)

  8. Tischler, M.B., Remple, R.K.: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples, 2nd edn. AIAA, Reston (2012)

    Book  Google Scholar 

  9. Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for aircraft. AIAA J. Guid. Control Dyn. 27(2), 218–228 (2004)

    Article  Google Scholar 

  10. Peters, D.A., He, C.J.: Correlation of measured induced velocities with a finite-state wake model. J. Am. Helicopter Soc. 36(3), 59–70 (1991)

    Article  Google Scholar 

  11. Johnson, W.: Technology drivers in the development of CAMRAD II. In: American Helicopter Society Aeromechanics Specialists Conference Proceedings, San Francisco (1994)

  12. Johnson, W., Moodie, A.M., Yeo, H.: Design and performance of lift-offset rotorcraft for short-haul missions. In: American Helicopter Society Future Vertical Lift Aircraft Design Conference Proceedings, San Francisco (2012)

  13. Hersey, S., Celi, R., Juhasz, O., Tischler, M.B.: Accurate state-space inflow modeling for flight dynamics and control of a coaxial-pusher rotorcraft. In: American Helicopter Society 74th Annual Forum Proceedings, Phoenix (2018)

  14. Ruddell, A.J.: Advancing Blade Concept (ABC) Technology Demonstrator, USAAVRADCOM TR-81-D-5 (1981)

  15. Juhasz, O., Syal, M., Celi, R., Khromov, V., Rand, O., Ruzicka, G.C., Strawn, R.C.: Comparison of three coaxial aerodynamic prediction methods including validation with model test data. J. Am. Helicopter Soc. 59(3) (2014)

    Article  Google Scholar 

  16. Johnson, W.: Influence of lift offset on rotorcraft performance, NASA/TP-2019 215404 (2009)

  17. Johnson, W.: Rotorcraft Aeromechanics. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  18. Ferguson, S.W.: A mathematical model for real time flight simulation of a generic tilt-rotor aircraft, NASA CR 166536 (1988)

  19. Bailey Jr., F.J.: A simplified theoretical method of determining the characteristics of a lifting rotor in forward flight, NACA-TR 716 (1941)

  20. Padfield, G.D.: Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, 2nd edn. AIAA, Reston (2007)

    Book  Google Scholar 

  21. Blackwell, R., Millott, T.: Dynamics design characteristics of the Sikorsky X2 technology demonstrator aircraft. In: American Helicopter Society 64th Annual Forum Proceedings, Montreal (2008)

  22. Leishman, J .G.: Principles of Helicopter Aerodynamics, 2nd edn. Cambridge University Press, New York (2006)

    Google Scholar 

  23. Walsh, D., Weiner, S., Arifian, K., Lawrence, T., Wilson, M., Millott, T., Blackwell, R.: High airspeed testing of the Sikorsky X2 technology demonstrator. In: American Helicopter Society 67th Annual Forum Proceedings, Virginia Beach (2011)

  24. Harendra, P.B., Joglekar, M.J., Gaffey, T.M., Marr, R.L.: Final Report V/STOL Tilt Rotor Study, Volume V: A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft, NASA CR 114614 (1973)

  25. Maisel, M.: NASA/Army XV-15 Tilt Rotor Research Aircraft Familiarization Document, NASA TM X-62,407 (1976)

  26. Acree, C.W., Tischler, M.B.: Determining XV-15 aeroelastic modes from flight data with frequency-domain methods, NASA/TP 3330 (1993)

  27. Brunken, J.E., Popelka, D.A., Bryson, R.J.: A review of the V-22 dynamics validation program. In: American Helicopter Society 45th Annual Forum Proceedings, Boston (1989)

  28. Acree, C.W., Johnson, W.: Aeroelastic stability of the LCTR2 civil tiltrotor. In: American Helicopter Society Technical Specialist’s Meeting Proceedings, Dallas (2008)

  29. Acree, C.W., Yeo, H., Sinsay, J.D.: Performance optimization of the NASA large civil tiltrotor, NASA TM 215359 (2008)

  30. Ivler, C.M., Juhasz, O.: Evaluation of control allocation techniques for medium lift tilt-rotor. In: American Helicopter Society 71st Annual Forum Proceedings, Virginia Beach (2015)

  31. Subrahmanyam, K.B., Kaza, K.R.V.: Nonlinear flap-lag-extensional vibrations of rotating, pretwisted, preconed beams including coriolos effects, NASA TM 87102 (1985)

  32. Enns, D.: Control allocation approaches. In: AIAA Guidance, Navigation and Control Conference, Boston (1998)

  33. Anon.: Flight control design—best practices, NATO RTO-TR-029 (2000)

  34. Anon.: Flying qualities of piloted aircraft, MIL-STD-1797B, Department of Defense Interface Standard (2006)

  35. McRuer, D.T., Ashkenas, I.L., Graham, D.: Aircraft Dynamics and Automatic Control. Princeton University Press, Princeton (1973)

    Google Scholar 

  36. Berger, T., Tischler, M.B., Hagerott, S.G., Cotting, M.C., Gresham, J.L., George, J.E., Krogh, K.J., D’Argenio, A., Howland, J.D.: Development and validation of a flight identified business jet simulation model using a stitching architecture. In: AIAA Modeling and Simulation Technologies Conference, Grapevine (2017)

  37. Anon.: Aerospace—flight control systems - design, installation and test of piloted military aircraft, general specification for SAE-AS94900 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Berger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Distribution A. Approved for public release; distribution is unlimited.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, T., Juhasz, O., Lopez, M.J.S. et al. Modeling and control of lift offset coaxial and tiltrotor rotorcraft. CEAS Aeronaut J 11, 191–215 (2020). https://doi.org/10.1007/s13272-019-00414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-019-00414-0

Keywords

Navigation