Log in

Expression profiles and bioinformatic analysis of microRNAs in myocardium of diabetic cardiomyopathy mice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

MicroRNAs (miRNAs) can regulate expression of target genes at post transcriptional level, and mediate the pathophysiological process of many diseases.

Objective

The study will illuminate the miRNA expression profiles of diabetic cardiomyopathy (DCM), seeking probable biomarkers of DCM at early stage and determining a target for the treatment of DCM.

Methods

Db/db mice were used as an animal model of type 2 diabetes mellitus. At 22 weeks of age, cardiac function was evaluated by echocardiography, and the structural changes in myocardium were evaluated by HE staining and TEM. The miRNA expression profiles were detected using miRNA sequencing and differentially expressed miRNAs were validated by real-time PCR. Bioinformatic analysis was used to analyze target genes of these miRNAs and relevant pathways in DCM.

Results

The results showed that 40 miRNAs were differentially expressed, including 28 upregulated miRNAs and 12 downregulated miRNAs. GO and KEGG pathway analysis showed that the target genes of up-regulated miRNAs were involved in 66 pathways, including Wnt, p53 and calcium signaling pathways, as well as FOXO and apoptosis signaling pathways, etc. The target genes of down-regulated miRNAs were involved in 68 pathways, including mitophagy, Ras and MAPK signaling pathways, etc. Moreover, some differentially expressed miRNAs were found in myocardium of DCM for the first time, such as miR-7225-5p, miR-696, miR-3470a, miR-3470b, miR-6240, miR-6538, miR-5128, miR-1195, miR-203-3p and miR-330-5p.

Conclusions

It is hoped that a few novel molecular pathways or targets of treatment for DCM would be found through understanding the expression features of miRNAs in diabetic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of microRNAs in cancer. Curr Biol 24:R762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Liu C, Zhu P, Li Y (2020) Novel insights into molecular mechanism of Mitochondria in Diabetic Cardiomyopathy. Front Physiol 11:609157

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugger H, Boudina S, Hu XX, Tuinei J, Zaha VG, Theobald HA, Yun UJ, McQueen AP, Wayment B, Litwin SE et al (2008) Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes 57:2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che H, Wang Y, Li Y, Lv J, Li H, Liu Y, Dong R, Sun Y, Xu X, Zhao J et al (2020) Inhibition of microRNA-150-5p alleviates cardiac inflammation and fibrosis via targeting Smad7 in high glucose-treated cardiac fibroblasts. J Cell Physiol 235:7769–7779

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zhang M (2021) GAS5 regulates diabetic cardiomyopathy via miR2213p/p27 axisassociated autophagy. Mol Med Rep 23

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2017) The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. Int J Cardiol 245:236–244

    Article  PubMed  Google Scholar 

  • Colpaert RMW, Calore M (2019) MicroRNAs in Cardiac Diseases. Cells 8

  • Copier CU, Leon L, Fernandez M, Contador D, Calligaris SD (2017) Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy. Sci Rep 7:13514

    Article  PubMed  PubMed Central  Google Scholar 

  • Diao X, Shen E, Wang X, Hu B (2011) Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice. Mol Med Rep 4:633–640

    CAS  PubMed  Google Scholar 

  • Dillmann WH (2019) Diabetic Cardiomyopathy. Circ Res 124:1160–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Yao J, **e H, Wang C, Chen J, Wei K, Ji Y, Liu L (2021) MicroRNA-195-5p downregulation inhibits endothelial mesenchymal transition and myocardial fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and inhibiting transforming growth factor Beta 1-Smads-snail pathway. Front Physiol 12:709123

    Article  PubMed  PubMed Central  Google Scholar 

  • Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A (2019) Molecular dysfunction and phenotypic derangement in Diabetic Cardiomyopathy. Int J Mol Sci 20

  • Fu F, Liu C, Shi R, Li M, Zhang M, Du Y, Wang Q, Li J, Wang G, Pei J et al (2021) Punicalagin protects against Diabetic Cardiomyopathy by promoting Opa1-Mediated mitochondrial Fusion via regulating PTP1B-Stat3 pathway. Antioxid Redox Signal 35:618–641

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Liu Y, Guo S, **ao L, Wu L, Wang Z, Liang C, Yao R, Zhang Y (2018) LAZ3 protects cardiac remodeling in diabetic cardiomyopathy via regulating miR-21/PPARa signaling. Biochim Biophys Acta Mol Basis Dis 1864:3322–3338

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Wang S, Guo H, Tan Y, Liang Y, Feng A, Liu Q, Damodaran C, Zhang Z, Keller BB et al (2018) Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis 9:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong CS, Kwon SJ, Cho MC, Kwak YG, Ha KC, Hong B, Li H, Chae SW, Chai OH, Song CH et al (2008) Overexpression of junctate induces cardiac hypertrophy and arrhythmia via altered calcium handling. J Mol Cell Cardiol 44:672–682

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Ding M, Tang D, Gao E, Li C, Wang K, Qi B, Qiu J, Zhao H, Chang P et al (2019) Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Theranostics 9:3687–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel KP, Dickie MM, Coleman DL (1966) Diabetes, a new mutation in the mouse. Science 153:1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S et al (2021) MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 20:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G (2021) Functional role of miR-155 in the Pathogenesis of Diabetes Mellitus and its complications. Noncoding RNA 7

  • Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, Youker KA, Kishore R, Krishnamurthy P (2016) MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun 471:423–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Whaley-Connell A, Sowers JR (2018) Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 61:21–28

    Article  CAS  PubMed  Google Scholar 

  • Khakdan S, Delfan M, Heydarpour Meymeh M, Kazerouni F, Ghaedi H, Shanaki M, Kalaki-Jouybari F, Gorgani-Firuzjaee S, Rahimipour A (2020) High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats. Arch Physiol Biochem 126:250–257

    Article  CAS  PubMed  Google Scholar 

  • Lecarpentier Y, Claes V, Duthoit G, Hebert JL (2014) Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 5:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J et al (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the heart failure Association-European Society of Cardiology. Eur Heart J 39:4243–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur P, Rani V (2021) MicroRNAs: a critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy. Curr Gene Ther 21:313–326

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Garg R, Bahl A, Khullar M (2021) Molecular Mechanisms and Epigenetic Regulation in Diabetic Cardiomyopathy. Front Cardiovasc Med 8:725532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM, Mouton S, Sebti Y et al (2014) Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130:554–564

    Article  CAS  PubMed  Google Scholar 

  • Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, **fra G, Martinez C, Ricart W, Rieusset J et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Prattichizzo F, Giuliani A, De Nigris V, Pujadas G, Ceka A, La Sala L, Genovese S, Testa R, Procopio AD, Olivieri F et al (2016) Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity? Diabetes Obes Metab 18:855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raut SK, Singh GB, Rastogi B, Saikia UN, Mittal A, Dogra N, Singh S, Prasad R, Khullar M (2016) miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy. Mol Cell Biochem 417:191–203

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR (2020) Targeting the progression of chronic kidney disease. Nat Rev Nephrol 16:269–288

    Article  PubMed  Google Scholar 

  • Tao L, Huang X, Xu M, Yang L, Hua F (2020) MiR-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial biogenesis and cardiomyocyte apoptosis. FASEB J 34:2173–2197

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li X, Lin Q, Xu Q (2019) Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene 715:143995

    Article  CAS  PubMed  Google Scholar 

  • Yildirim SS, Akman D, Catalucci D, Turan B (2013) Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochem Biophys 67:1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Zhao Y, He M, Li H, Fan J, Nie X, Yan M, Chen C, Wang DW (2019) MiR-30c/PGC-1beta protects against diabetic cardiomyopathy via PPARalpha. Cardiovasc Diabetol 18:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu M, Liu Y, Zhang B, Shi Y, Cui L, Zhao X (2015) Inhibiting microRNA-144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin-induced diabetic mice. Cardiovasc Pathol 24:375–381

    Article  CAS  PubMed  Google Scholar 

  • Zhang WY, Wang J, Li AZ (2020) A study of the effects of SGLT-2 inhibitors on diabetic cardiomyopathy through miR-30d/KLF9/VEGFA pathway. Eur Rev Med Pharmacol Sci 24:6346–6359

    PubMed  Google Scholar 

  • Zhang M, Sui W, **ng Y, Cheng J, Cheng C, Xue F, Zhang J, Wang X, Zhang C, Hao P et al (2021) Angiotensin IV attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy, apoptosis and fibrosis. Theranostics 11:8624–8639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Li W, Zhao H (2020) Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p. Am J Transl Res 12:718–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Li YJ, Wang M, Zhang LH, Guo BY, Zhao ZS, Meng FL, Deng YG, Wang RY (2011) Involvement of RhoA/ROCK in myocardial fibrosis in a rat model of type 2 diabetes. Acta Pharmacol Sin 32:999–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Sun Y, Zhang L, Kang W, Li N, Li Y (2018) The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes Metab Res Rev 34:e3022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Nature Foundation of Hebei Province (No. H2019206196) and Medical Science Research Project of Hebei Province (No. 20210371), Hebei, China. The authors thank Professors Rong Zhang (Department of toxicology, Hebei Medical University, Shijiazhuang, China) and Kangchen Biotech Co., Ltd. (Shanghai, China) for technological assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhou.

Ethics declarations

Conflicts of interest

None of the authors have any potential conflicts of interest associated with this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yuan, L., Chen, Y. et al. Expression profiles and bioinformatic analysis of microRNAs in myocardium of diabetic cardiomyopathy mice. Genes Genom 45, 1003–1011 (2023). https://doi.org/10.1007/s13258-023-01403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-023-01403-8

Keywords

Navigation