Log in

Myostatin-2 isolation and spatiotemporal expression comparison between myostatin-1 and -2 in Larimichthys crocea

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The 3,110-bp myostatin-2 was obtained from a marine teleost, Larimichthys crocea (L. crocea), by PCR amplication coupled with 5′- and 3′-rapid amplification of cDNA ends. Myostatin-2 contains a 71-bp 5′-untranslated region, a 328-bp exon I, an 895-bp intron I, a 371-bp exon II, a 382-bp intron II, a 381-bp exon III, and a 682 bp 3′-untranslated region, and it encodes a protein of 359 amino acid residues. The deduced amino acid sequence has typical characteristics of TGF-β family members with nine conserved cysteine residues and a RXXR proteolytic processing site within the conserved C-terminal portion, and more than 90 % similarity with other fish myostatin-2 proteins. Quantitative assessment revealed that levels of myostatin-1 transcripts fluctuated markedly, whereas myostatin-2 expression remained very low during most stages of embryonic development. In addition, both myostatin-1 and -2 transcripts were detected in all 10 examined tissues of juvenile and adult individuals, but they exhibited different expression patterns and responses to fasting. Expression of myostatin-1 was highest in skeletal muscle, which was higher than myostatin-2 by 2–3 orders of magnitude. Myostatin-2 transcripts were greatest in brain. Myostatin-1 expression increased significantly after 3 days of fasting, whereas myostatin-2 expression was unaffected. Our results imply that myostatin-1 and -2 may have different roles in skeletal muscle growth and development of L. crocea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta J, Carpio Y, Borroto I, Gonzalez O, Estrada MP (2005) Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J Biotechnol 119:324–331

    Article  CAS  PubMed  Google Scholar 

  • Ai Q, Mai K, Tan B, Xu W, Zhang W, Ma H, Liufu Z (2006) Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 261:327–336

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amali AA, Lin CJ, Chen YH, Wang WL, Gong HY, Lee CY, Ko YL, Lu JK, Her GM, Chen TT, Wu JL (2004) Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev Dyn 229:847–856

    Article  CAS  PubMed  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Biga PR, Cain KD, Hardy RW, Schelling GT, Overturf K, Robert SB, Goetz FW, Ott TL (2004) Growth hormone differentially regulates muscle myostatin 1 and -2 and increases circulating cortisol in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 138:32–41

    Article  CAS  PubMed  Google Scholar 

  • Biga PR, Roberts SB, Iliev DB, McCauley LAR, Moon JS, Collodi P, Goetz FW (2005) The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio. Comp Biochem Physiol B Biochem Mol Biol 141:218–230

    Article  PubMed  Google Scholar 

  • De Santis C, Jerry DR (2011) Differential tissue-regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation. Mol Cell Endocrinol 335:158–165

    Article  PubMed  Google Scholar 

  • Delgado I, Fuentes E, Escobar S, Navarro C, Corbeaux T, Reyes AE, Vera MI, Alvarez M, Molina A (2008) Temporal and spatial expression pattern of the myostatin gene during larval and juvenile stages of the Chilean flounder (Paralichthys adspersus). Comp Biochem Physiol B Biochem Mol Biol 151:197–202

    Article  PubMed  Google Scholar 

  • Garikipati DK, Gahr SA, Rodgers BD (2006) Identification, characterization and quantitative expression analysis of rainbow trout myostatin-1a and -1b genes. J Endocrinol 190:879–888

    Article  CAS  PubMed  Google Scholar 

  • Garikipati DK, Gahr SA, Roalson EH, Rodgers BD (2007) Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): genomic organization, differential expression, and pseudogenization. Endocrinology 148:2106–2115

    Article  CAS  PubMed  Google Scholar 

  • Helterline DLI, Garikipati D, Stenkamp DL, Rodgers BD (2007) Embryonic and tissue-specific regulation of myostatin-1 and -2 gene expression in zebrafish. Gen Comp Endocrinol 151:90–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu S, Ni W, Sai W, Zi H, Qiao J, Wang P, Sheng J, Chen C (2013) Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS One 8:e58521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji S, Losinski RL, Cornelius RL, Frank SG, Willis GM, Gerrard DE, Depreux FF, Spurlock ME (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275:1265–1273

    Google Scholar 

  • Johansen KA, Overturf K (2006) Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 144:119–127

    Article  PubMed  Google Scholar 

  • Kambadur R, Sharma M, Simth TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–916

    CAS  PubMed  Google Scholar 

  • Kerr T, Roalson EH, Rodgers BD (2005) Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 7:390–400

    Article  CAS  PubMed  Google Scholar 

  • Ko CF, Chiou TT, Chen TT, Wu JL, Chen JC, Lu JK (2007) Molecular cloning of myostatin gene and characterization of tissue-specific and developmental stage-specific expression of the gene in orange spotted grouper, Epinephelus coioides. Mar Biotechnol (NY) 9:20–32

    Article  CAS  Google Scholar 

  • Kocabas AM, Kucuktas H, Dunham RA, Liu Z (2002) Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochem Biophys Acta 1575:99–107

    CAS  PubMed  Google Scholar 

  • Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL (2009) Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem Biophys Res Commun 387:766–771

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kim YS, Oh MY, Jeong I, Seong KB, ** HJ (2010) Improving rainbow trout (Oncorhynchus mykiss) growth by treatment with a fish (Paralichthys olivaceus) myostatin prodomain expressed in soluble forms in E. coli. Aquaculture 302:270–278

    Article  CAS  Google Scholar 

  • Maccatrozzo L, Bargelloni L, Radaelli G, Mascarello F, Patarnello T (2001a) Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar Biotechnol 3:224–230

    Article  CAS  PubMed  Google Scholar 

  • Maccatrozzo L, Bargelloni L, Cardazzo B, Rizzo G, Patarnello T (2001b) A novel myostatin gene is present in teleost fish. FEBS Lett 509:36–40

    Article  CAS  PubMed  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci 94:12457–12461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:2–7

    Google Scholar 

  • Nadjar-Boger E, Hinits Y, Funkenstein B (2012) Structural and functional analysis of myostatin-2 promoter alleles from the marine fish Sparus aurata: evidence for strong muscle-specific promoter activity and post-transcriptional regulation. Mol Cell Endocrinol 361:51–68

    Article  CAS  PubMed  Google Scholar 

  • Nadjar-Boger E, Maccatrozzo L, Radaelli G, Funkenstein B (2013) Genomic cloning and promoter functional analysis of myostatin-2 in shi drum, Umbrina cirrosa: conservation of muscle-specific promoter activity. Comp Biochem Physiol B Biochem Mol Biol 164:99–110

    Article  CAS  PubMed  Google Scholar 

  • Nadjor-Boger E, Funkenstein B (2011) Myostatin-2 gene structure and polymorphism of the promoter and first intron in the marine fish Sparus aurata: evidence for DNA duplications and/or translocations. BMC Genet 12:22

    Article  Google Scholar 

  • Østbye T, Galloway TF, Nielsen C, Gabestad I, Bardal T (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268:5249–5257

    Article  PubMed  Google Scholar 

  • Østbye T, Wetten OF, Tooming-Klunderud A, Jakobsen KS, Yafe A, Etzioni S, Moen T, Andersen O (2007) Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and -2. Gene 403:159–169

    Article  PubMed  Google Scholar 

  • Patruno M, Sivieri S, Poltronieri C, Sacchetto R, Maccatrozzo L, Martinello T, Funkenstein B, Radaelli G (2008) Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-1 and myostatin during development of Dicentrarchus labrax (Pisces: Osteichthyes). Cell Tissue Res 331:643–658

    Article  CAS  PubMed  Google Scholar 

  • Rescan PY, Jutel I, Ralliere C (2001) Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J Exp Biol 204:3523–3529

    CAS  PubMed  Google Scholar 

  • Roberts SB, Goetz FW (2003) Myostatin protein and RNA transcript levels in adult and develo** brook trout. Mol Cell Endocrinol 210:9–20

    Article  CAS  PubMed  Google Scholar 

  • Rodgers BD, Weber GM, Sullivan CV, Levine MA (2001) Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysop. Endocrinology 142:1412–1418

    CAS  PubMed  Google Scholar 

  • Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Xue L, Hu M (2013) Construction of transgenic red carp (Cyprinus carpio) by different gene transfer methods. J Agric Biotechnol 21:19–28 (In Chinese)

    CAS  Google Scholar 

  • Terova G, Bernardini G, Binelli G, Gornati R, Saroglia M (2006) cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their aboundance levels. Domest Anim Endocrinol 30:304–319

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalities and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vianello S, Brazzoduro L, Dalla Valle L, Belvedere P, Colombo L (2003) Myostatin expression during development and chronic stress in zebrafish (Danio rerio). J Endocrinol 176:47–59

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wu G, Zohar Y, Du SJ (2003) Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol 206:4067–4079

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Qian K, Qian H, Li L, Yang Q, Li M (2006) Molecular cloning and characterization of the myostatin gene in croceine croaker, Pseudosciaena crocea. Mol Biol Rep 33:129–136

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Li T, Yang Q, **ao Z (2008a) Cloning and tissue expression analysis of the myostatin gene in the red drum, Sciaenops ocellatus. Acta Pharmacol Sin 30:95–101

    CAS  Google Scholar 

  • Xue L, Yang Q, **ao Z, Li L (2008b) Molecular characterization of myostatin in black seabream, Acanthopagrus schlegelii. DNA Seq 19:217–223

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Dong X, Zhang X, Diallo A (2012) Organization and functional analysis of the 5′ flanking regions of myostatin-1 and 2 genes from Larimichthys crocea. DNA Cell Biol 31:845–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye H, Chen S, Sha Z, Liu Y (2007) Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). Mar Biotechnol (NY) 9:262–272

    Article  CAS  Google Scholar 

  • Zhong Q, Zhang Q, Chen Y, Sun Y, Qi J, Wang Z, Li S, Li C, Lan X (2008) The isolation and characterization of myostatin gene in Japanese flounder (Paralichthys olivaceus): ubiquitous tissue expression and developmental specific regulation. Aquaculture 280:247–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (Grant Nos. 30871916 and 31172398), and Agricultural Project of Science and Technology Department of Zhejiang Province (Grant No. 2011C22087) and of Ningbo Municipality of China (Grant Nos. 2011C10001 and 2011B82018) to Xue. This article is sponsored by K. C. Wong Magna Fund in Ningbo University. Authors thank Mr. Mehary Aynealem Gebremariam for his proofreading the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyi Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Xue, L., Sun, S. et al. Myostatin-2 isolation and spatiotemporal expression comparison between myostatin-1 and -2 in Larimichthys crocea . Genes Genom 36, 599–609 (2014). https://doi.org/10.1007/s13258-014-0196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0196-7

Keywords

Navigation