Log in

QTL analyses of heterosis for grain yield and yield-related traits in indica-japonica crosses of rice (Oryza sativa L.)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Two sets of rice materials, 166 RILs derived from a cross between Milyang 23 (Korean indica-type rice) and Tong 88-7 (japonica Rice), and BC1F1 hybrids derived from crosses between the RILs and the female parent, Milyang 23, were produced to identify QTLs for heterosis of yield and yield-related traits. The QTLs were detected from three different phenotype data sets including the RILs, BC1F1 hybrids, and mid-parental heterosis data set acquired from the definition of mid-parental heterosis. A total of 57 QTLs were identified for nine traits. Of eight QTLs detected for yield heterosis, five overlapped with other heterosis QTLs for yield-related traits such as spikelet number per panicle, days to heading, and spikelet fertility. Four QTLs for yield heterosis, gy1.1, py6, gy10, and py11, were newly identified in this study. We identified a total of 17 EpQTLs for yield heterosis that explain 21.4 ∼ 59.0 % of total phenotypic variation, indicating that epistatic interactions may play an important role in heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birchler JA, Auger DL and Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15: 2236–2239

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Yao H and Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc. Natl. Acad. Sci. USA 103:12957–12958

    Article  PubMed  CAS  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32: 627–628

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X et al. (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. USA 105: 11436–11441

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Kim JH, Jiang W, Chu SH, Woo MO, Han L, Brar D and Koh HJ (2007) Identification of subspecies-specific STS markers and their association with segregation distortion in rice (Oryza sativa L.). J. Crop Sci. Biotech. 10: 175–184

    Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28: 454–455

    Article  PubMed  CAS  Google Scholar 

  • Davis MD and Rutger JN (1976) Yield of F1, F2 and F3 hybrids of rice (Oryza sativa L.). Euphytica 25: 587–595

    Article  Google Scholar 

  • East EM (1908) Inbreeding in corn. Conn. Agric. Exp. Sta. Rpt. 1907: 419–428

    Google Scholar 

  • Hochholdinger F and Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci. 12: 427–432

    Article  PubMed  CAS  Google Scholar 

  • Hua J, **ng Y, Wu W, Xu C, Sun X, Yu S and Zhang Q (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 100: 2574–2579

    Article  PubMed  CAS  Google Scholar 

  • Hua JP, **ng YZ, Xu CG, Sun XL, Yu SB and Zhang Q (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162: 1885–1895

    PubMed  CAS  Google Scholar 

  • Jiang W, Chu SH, Piao R, Chin JH, ** YM, Lee J, Qiao Y, Han L, Piao Z and Koh HJ (2008) Fine map** and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Theor. Appl. Genet. 116: 1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acad. Sci. USA 3: 310–312

    Article  PubMed  CAS  Google Scholar 

  • Jones WJ (1926) Hybrid vigor in rice. J. Amer. Soc. Agron. 18: 423–428

    Article  Google Scholar 

  • Kim KH and Heu MH (1979) A study on heterosis in crosses between semi-dwarf rice cultivars. Kor. J. Breed. 11: 127–132

    Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann. Hum. Genet. 12: 172–175

    Article  Google Scholar 

  • Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer RC, Altmann T and Melchinger AE (2007) Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175: 2009–2017

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lu K, Chen Z, Mu T, Hu Z and Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180: 1725–1742

    Article  PubMed  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS and Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158: 1737–1753

    PubMed  CAS  Google Scholar 

  • Li ZK, Pinson SR, Park WD, Paterson AH and Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145: 453–465

    PubMed  CAS  Google Scholar 

  • Lin SC and Yuan LP (1980) Hybrid rice breeding in China. In: IRRI (ed) Innovative approaches to rice breeding. IRRI, Manila, Philippines, p 35–51

    Google Scholar 

  • Lippman ZB and Zamir D (2007) Heterosis: revisiting the magic. Trends Genet. 23: 60–66

    Article  PubMed  CAS  Google Scholar 

  • Liu KD, Zhou ZQ, Xu CG, Zhang Q and Saghai Maroof MA (1996) An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties. Euphytica 90: 275–280

    Article  Google Scholar 

  • Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS and Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158: 1755–1771

    PubMed  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H and Kinoshita T (1997) Report on QTL nomenclature. Rice Genet. Newsl. 14: 11–13

    Google Scholar 

  • Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS and Luo LJ (2005) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor. Appl. Genet. 110: 649–659

    Article  PubMed  CAS  Google Scholar 

  • Powers L (1945) An expansion of Jones’s theory for the explanation of heterosis. Am. Nat. 78: 275–280

    Article  Google Scholar 

  • Rogers SO and Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol. Biol. Man. 6: 1–10

    Google Scholar 

  • Saini SS, Kumar I and Gagneja MR (1974) A study on heterosis in rice (Oryza sativa L.). Euphytica 23: 219–224

    Article  Google Scholar 

  • Schnell FW and Cockerham CC (1992) Multiplicative vs. arbitrary gene action in heterosis. Genetics 131: 461–469

    PubMed  CAS  Google Scholar 

  • Shull GF (1908) The composition of a field of maize. Rep. Am. Breed. Assoc. 5: 51–59

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J. 3:739–744

    Article  CAS  Google Scholar 

  • Stuber CW (1994) Heterosis in plant breeding. Plant Breed. Rev. 12: 227–251

    Google Scholar 

  • Wang DL, Zhu J, Li ZKL and Paterson AH (1999) Map** QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99: 1255–1264

    Article  Google Scholar 

  • **ao J, Li J, Yuan L and Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140: 745–754

    PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q and Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 94: 9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Yuan L (1994) Increasing yield potential in rice by exploitation of heterosis. In: Virmani SS (ed) Hybrid rice technology: New developments and future prospects. International rice research institute, Manila, Philippines, p 1–6

    Google Scholar 

  • Yuan L (2004) Hybrid rice technology for food security in the world Procedings of the FAO rice conference, Rome, Italy

  • Yuan L and Virmani SS (1988) Status of hybrid rice research and development. In: IRRI (ed) Hybrid rice, IRRI, Manila, Philippines

    Google Scholar 

  • Zhang Q, Liu KD, Yang GP, Maroof MAS, Xu CG and Zhou ZQ (1997) Molecularmarker diversity and hybrid sterility in indica-japonica rice crosses. Theor. Appl. Genet. 95: 112–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jong Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, SH., Jiang, W., Lee, J. et al. QTL analyses of heterosis for grain yield and yield-related traits in indica-japonica crosses of rice (Oryza sativa L.). Genes Genom 34, 367–377 (2012). https://doi.org/10.1007/s13258-011-0223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0223-x

Keywords

Navigation