Log in

Sequence diversification of 45S rRNA ITS, trnH-psbA spacer, and matK genic regions in several Allium species

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2010

Abstract

Allium is a very diverse genus with over 600 species distributed worldwide. Haplotype analyses of 45S rRNA ITS, trnH-psbA spacer, and matK gene sequences in 9 Allium species were carried out, subsequent to which phylogenetic relations of the nine species were also analyzed. Of the three genes, the nuclear 45S rRNA ITS sequences showed the highest variation with one haplotype in each species. The other two chloroplast genes revealed that more than one haplotype was present in each species, and each haplotype was present in several of the species. In the matK gene, EcoRI restriction revealed heteroplasmy in which the functional gene retains the EcoRI recognition site while the nonfunctional, pseudogene does not. Phylogenetic patterns were not consistent among the haplotypes of the 45 rRNA ITS, trnH-psbA spacer, and matK genic regions. This phylogenetic incongruency might be due to the presence of multiple haplotypes in each of the chloroplast genes. However, the inconsistency of the phylogenetic relationships, based on the 45S rRNA ITS sequences makes a strong case for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg von GL, Samylov A, Klaas M and Hanelt P (1996) Chloroplast DNA restriction analysis and intragenic grou** of Allium (Alliaceae). Pl. Syst. Evol. 200: 253–261.

    Article  Google Scholar 

  • Birky Jr CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35: 125–148.

    Article  PubMed  CAS  Google Scholar 

  • Blaxter ML (2004) The promise of a DNA taxonomy. Phil. Trans. R. Soc. Lond. B. 359: 669–679.

    Article  CAS  Google Scholar 

  • Do GS, Seo BB, Ko JM, Lee SH, Pak JH, Kim IS and Song SD (1999) Analysis of somaclonal variation through tissue culture and chromosomal localization of rDNA sites by fluorescent in situ hybridization in wild Allium tuberosum and a regenerated variant. Plant Cell Organ Cult. 57: 113–119.

    Article  CAS  Google Scholar 

  • Do GS, Seo BB, Yamamoto M, Suzuki G and Mukai Y (2001) Identification and chromosomal location of tandemly repeated DNA sequences in Allium cepa. Genes Genet. Syst. 76: 53–60.

    Article  PubMed  CAS  Google Scholar 

  • El-Gadi A and Elkington TT (1975) Comparison of the Giemsa C-band karyotypes and the relationships of Allium cepa, A. fistulosum and A. galanthum. Chromosoma 51: 19–23.

    Article  Google Scholar 

  • El-Gadi A and Elkington TT (1977) Numerical taxonomic studies in Allium subgenus Rhizirideum. New Phytol. 79: 183–201.

    Article  Google Scholar 

  • Erixon P and Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and in/del evolution of the chloroplast clpP1 gene. PLoS One 3: 1386.

    Article  CAS  Google Scholar 

  • Faure S, Noyer JL, Carreel F, Horry JP, Bakry F and Lanaud C (1994) Maternal inheritance of chloroplast genome in bananas (Musa acuminate). Curr. Genet. 25: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Friesen N, Pollner S, Bachmann K and Blattner FR (1999) RAPDs and noncoding chloplast DNA reveal a single origin of the cultivated Allium fistulosum subgenus from A. altaicum (Alliaceae). Am. J. Bot. 86: 554–562.

    Article  PubMed  CAS  Google Scholar 

  • García-Díaz A, Oya R, Sánchez A and Luque F (2003) Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy. Genome 46: 377–381.

    Article  PubMed  Google Scholar 

  • Gu JY, Dempsey S and Newton KJ (1994) Rescue of a maize mitochondrial cytochrome oxidase mutant by tissue culture. Plant J. 6: 788–794.

    Article  Google Scholar 

  • Hajibabaei M, Singer GAC, Hebert PDN and Hickey D (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genet. 23: 167–172.

    Article  CAS  Google Scholar 

  • Hao G, Lee DH, Lee JS and Lee NS (2002) A study of taxonomical relationships among species of Korean Allium sec. Sacculiferum (Alliaceae) and related species using inter simple sequence repeat (ISSR) markers. Bot. Bull. Acad. Sin. 43: 63–68.

    CAS  Google Scholar 

  • Havey MJ (1991) Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome. Theor. Appl. Genet. 81: 752–757.

    Article  CAS  Google Scholar 

  • Havey MJ (1992) Restriction enzyme analysis of the chloroplast and nuclear 45S ribosomal DNA of Allium sections Cepa and Phyllodolon (Alliaceae). Pl. Syst. Evol. 183: 17–31.

    Article  CAS  Google Scholar 

  • Havey MJ (1995) Simmonds NW}, eds., 2nd edition, Wiley Pub. Co., New York, pp. 344–350.

    Google Scholar 

  • Hebert PDN, Alina C, Shelley LB and Jeremy RW (2003) Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. Biol. Sci. 270: 313–321.

    Article  CAS  Google Scholar 

  • Houliston GJ and Olson MS (2006) Nonneutral evolution of organelle genes in Silene vulgaris. Genetics 174: 1983–1994.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao C, Chatterton NJ, Asay KH and Jensen KB (1995) Phylogentic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 221–223.

    Article  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genet. 18: 486–487.

    Article  Google Scholar 

  • Ipek M, Ipek A and Simon P (2008) Genetic characterization of Allium tuncelianum: an endemic edible Allium species with garlic ordor. Sci. Hort. 115: 409–415.

    Article  CAS  Google Scholar 

  • Irifune K, Hirai K, Zheng J, Tanaka R and Morikawa H (1995) Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization in Allium fistulosum. Theor. Appl. Genet. 90: 312–316.

    Article  CAS  Google Scholar 

  • Jobes D and Thien L (1997) A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful marker for plant internal transcribed spacer (ITS) sequences. Plant Mol. Biol. Rep. 15: 326–334.

    Article  CAS  Google Scholar 

  • Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knap S, Chase M and Leitch AR (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol. J. Linn. Soc. 82: 615–625.

    Article  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weight LA and Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102: 8369–8374.

    Article  PubMed  CAS  Google Scholar 

  • Lahaye R, van der Bank M, Bogorin D, Warner J, Puplin F, Gigot G, Maurin O, Duthoit S, Barrclough TG and Savolanien V (2008) DNA barcoding the floras of biodiversity hotspots. Proc. Natl. Acad. Sci. USA 105: 2923–2928.

    Article  PubMed  Google Scholar 

  • Liu Q, Ge S, Tang H, Zhang X, Zhu G and Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol. 170: 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Mes THM, Fritsch RM, Pollner S and Bachmann K (1999) Evolution of the chloroplast genome and polymorphic ITS regions in Allium subg. Melanocrommyum. Genome 42: 237–247.

    CAS  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 83: 383–404.

    Article  Google Scholar 

  • Pich U, Fritsch R and Schubert I (1996) Closely related Allium speices (Alliaceae) share a very similar satellite sequence. Pl. Syst. Evol. 202: 255–264.

    Article  CAS  Google Scholar 

  • Ricroch A, Peffley EB and Baker RJ (1992) Chromosomal location of rDNA in Allium: in situ hybridization using biotin- and fluorescent-labelled probe. Theor. Appl. Genet. 83: 413–418.

    Article  Google Scholar 

  • Shibata F and Hizume M (2002) Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor. Appl. Genet. 105: 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Son SW, Kim JH, Kim KJ and Park SJ (2009) Molecular evidence for the hybridity of Ilex x wandoensis and the phylogenetic study of Korean Ilex based on ITS sequence data. Genes Genomics. 31: 53–63.

    Article  CAS  Google Scholar 

  • Traub H (1968) The order of Allium. Plant Life 24: 129–138.

    Google Scholar 

  • Van Raamsdonk LWD, Ginkel MV and Kik C (2000) Phylogeny reconstruction and hybrid analysis in Allium subgenus Rhizirideum. Theor. Appl. Genet. 100: 1000–1009.

    Article  Google Scholar 

  • Vvdensky A (1944) The genus Allium in USSR. Herbertia 11: 65–218.

    Google Scholar 

  • Wintz H (1994) Analysis of heteroplasmy in a cytoplasmic mutant maize. Plant Physiol. Biochem. 32: 649–653.

    CAS  Google Scholar 

  • Yamashita KI, Oyama T, Noda R, Miyazaki T and Tashiro Y (1998) Comparative study on methods for identification of chloroplast DNA of cultivated and wild species in section Cepa of Allium. Bull. Fac. Agr. Saga Univ. 83: 111–120.

    CAS  Google Scholar 

  • Yonemori K, Honsho C, Eiadthong K and Sugiura A (2002) Phylogenetic relationships of Manngifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin. Plant Syst. Evol. 231: 59–75.

    Article  CAS  Google Scholar 

  • Young ND and dePamphilis CW (2000) Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron of nonphotosynthetic plants. Mol. Biol. Evol. 17: 1933–1941.

    PubMed  CAS  Google Scholar 

  • **ngyi G, Songlin R, Weiming H, Daguang C, and Longjiang F (2008) Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct. Integr. Genomics 8: 101–108.

    Article  CAS  Google Scholar 

  • Zhang D and Sang T (1999) Physical map** of ribosomal RNA genes in Peonies (Paeonia, Paoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Amer. J. Bot. 86: 735–740.

    Article  CAS  Google Scholar 

  • Zhong Y, Zhao Q, Shi S, Huang Y and Hasegawa M (2002) Detecting evolutionary rate heterogeneity among mangroves and their close terrestrial relatives. Ecol. Lett. 5: 427–432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Soo Kim.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s13258-010-0630-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, JH., Park, KC., Kim, TW. et al. Sequence diversification of 45S rRNA ITS, trnH-psbA spacer, and matK genic regions in several Allium species. Genes Genom 32, 165–172 (2010). https://doi.org/10.1007/s13258-009-0849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-009-0849-0

Keywords

Navigation