Log in

Study of PRESAGE® dosimeter for end-to-end 3D radiotherapy verification using an anthropomorphic phantom with bespoke dosimeter insert

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Modern radiotherapy techniques have advanced and become more sophisticated. End-to-end 3D verification of the complex radiotherapy dose distribution in an anthropomorphic phantom can ensure the accuracy of the treatment delivery. The phantoms commonly used for dosimetry are homogeneous solid water phantom which lacks the capability to measure the 3D dose distribution for heterogeneous tissues necessary for advanced radiotherapy techniques. Therefore, we developed an end-to-end 3D radiotherapy dose verification system based on MAX-HD anthropomorphic phantom (Integrated Medical Technologies Inc., Troy, New York) with bespoke intracranial insert for PRESAGE® dosimeter. In this study, several advanced radiotherapy treatment techniques of various levels of complexity; 3D-CRT, IMRT and VMAT treatment, were planned for a 20 mm diameter of a spherical target in the brain region and delivered to the phantom. The dosimeters were read out using an in-house developed optical computed tomography (OCT) imaging system known as 3DmicroHD-OCT. It was found that the measured dose distribution of the PRESAGE® when compared with the measured dose distribution of EBT film and Monaco TPS has a maximum difference of less than 3% for 3D-CRT, IMRT and VMAT treatment plans. The gamma analysis results of PRESAGE® in comparison to EBT film and Monaco TPS show pass rates of more than 95% for the criteria of 3% dose difference and 3 mm distance-to-agreement. This study proves the capability of PRESAGE® and bespoke MAX-HD phantom in conjunction with the 3DmicroHD-OCT system to measure 3D dose distribution for end-to-end dosimetry verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Clark CH, Aird EGA, Bolton S, Miles EA, Nisbet A, Snaith JAD, Thomas RAS, Venables K, Thwaites DI (2015) Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials. Br J Radiol 88(1055):20150251

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clark CH, Ga Aird E, Bolton S, Miles EA, Nisbet A, Snaith JA, Thomas RA, Venables K, Thwaites DI (2015) Radiotherapy dosimetry audit: Three decades of improving standards and accuracy in UK clinical practice and trials. Br J Radiol. https://doi.org/10.1259/bjr.20150251

    Article  PubMed  PubMed Central  Google Scholar 

  3. IAEA (2016) IAEA human health series 31—accuracy requirements and uncertainties in radiotherapy. IAEA Hum Health Ser 31:297. https://doi.org/10.1038/sj.bjc.6604224

    Article  Google Scholar 

  4. Khezerloo D, Nedaie HA, Takavar A, Zirak A, Farhood B, Banaee N, Alidokht E (2018) Dosimetric properties of new formulation of PRESAGE® with tin organometal catalyst: development of sensitivity and stability to megavoltage energy. J Cancer Res Ther 14(2):308–313

    Article  CAS  PubMed  Google Scholar 

  5. Rahman WN, Wong CJ, Ackerly T, Yagi N, Geso M (2012) Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Med 35:301–309

    Article  PubMed  Google Scholar 

  6. Kakakhel MB, Jirasek A, Johnston H, Kairn T, Trapp JV (2017) Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering. Australas Phys Eng Sci Med 40:159–165

    Article  CAS  PubMed  Google Scholar 

  7. Hill R, Healy B, Butler D, Odgers D, Gill S, Lye J, Gorjiara T, Pope D, Hill B (2018) Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine. Australas Phys Eng Sci Med 41:781–808

    Article  PubMed  Google Scholar 

  8. Molineu A, Followill DS, Balter PA, Hanson WF, Gillin MT, Huq MS, Eisbruch A, Ibbott GS (2005) Design and implementation of an anthropomorphic quality assurance phantom for intensity-modulated radiation therapy for the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 63(2):577–583

    Article  PubMed  Google Scholar 

  9. Faught AM, Kry SF, Luo D, Molineu A, Bellezza D, Gerber RL, Davidson SE, Bosch W, Drzymala RE, Galvin J (2013) Development of a modified head and neck quality assurance phantom for use in stereotactic radiosurgery trials. J Appl Clin Med Phys 14(4):206–215

    Article  PubMed Central  Google Scholar 

  10. Kron T, Ungureanu E, Antony R, Hardcastle N, Clements N, Ukath J, Fox C, Lonski P, Wanigaratne D, Haworth A (2017) Patient specific quality control for Stereotactic Ablative Body Radiotherapy (SABR): it takes more than one phantom. J Phys Conf Ser 777(1):012017

    Article  Google Scholar 

  11. Ibbott GS, Followill DS, Molineu HA, Lowenstein JR, Alvarez PE, Roll JE (2008) Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 71(1):S71–S75

    Article  PubMed  PubMed Central  Google Scholar 

  12. Molineu A, Hernandez N, Nguyen T, Ibbott G, Followill D (2013) Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom. Med Phys 40(2):022101

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hu Y, Hickling SV, Qian J, Blackwell CR, McLemore LB, Tryggestad EJ (2022) Characterization and commissioning of a Leksell Gamma Knife ICON system for framed and frameless stereotactic radiosurgery. J Appl Clin Med Phys 23(3):e13475

    Article  PubMed  PubMed Central  Google Scholar 

  14. Church C, MacDonald RL, Parsons D, Syme A (2023) Evaluation of plan quality and treatment efficiency in cranial stereotactic radiosurgery treatment plans with a variable source-to-axis distance. Med Phys. https://doi.org/10.1002/mp.16288

    Article  PubMed  Google Scholar 

  15. Butson M, Haque M, Smith L, Butson E, Odgers D, Pope D, Gorjiana T, Whitaker M, Morales J, Hong A (2017) Practical time considerations for optically stimulated luminescent dosimetry (OSLD) in total body irradiation. Australas Phys Eng Sci Med 40:167–171

    Article  PubMed  Google Scholar 

  16. Eaton DJ, Tyler J, Backshall A, Bernstein D, Carver A, Gasnier A, Henderson J, Lee J, Patel R, Tsang Y (2017) An external dosimetry audit programme to credential static and rotational IMRT delivery for clinical trials quality assurance. Physica Med 35:25–30

    Article  Google Scholar 

  17. Fogg P, Das KR, Kron T, Fox C, Chua B, Hagekyriakou J (2010) Thermoluminescence dosimetry for skin dose assessment during intraoperative radiotherapy for early breast cancer. Australas Phys Eng Sci Med 33:211–214

    Article  CAS  PubMed  Google Scholar 

  18. Izewska J, Lechner W, Wesolowska P (2018) Global availability of dosimetry audits in radiotherapy: the IAEA dosimetry audit networks database. Phys Imaging Radiat Oncol 5:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nakamura M, Minemura T, Ishikura S, Nishio T, Narita Y, Nishimura Y (2016) An on-site audit system for dosimetry credentialing of intensity-modulated radiotherapy in Japanese Clinical Oncology Group (JCOG) clinical trials. Physica Med 32(8):987–991

    Article  Google Scholar 

  20. Markovic M, Stathakis S, Mavroidis P, Jurkovic I, Papanikolaou N (2014) Characterization of a two-dimensional liquid-filled ion chamber detector array used for verification of the treatments in radiotherapy. Med Phys 41(5):051704

    Article  PubMed  Google Scholar 

  21. Jafari SM, Jordan TJ, Distefano G, Bradley DA, Spyrou NM, Nisbet A, Clark CH (2015) Feasibility of using glass-bead thermoluminescent dosimeters for radiotherapy treatment plan verification. Br J Radiol 88(1055):20140804

    Article  PubMed  PubMed Central  Google Scholar 

  22. Létourneau D, Gulam M, Yan D, Oldham M, Wong JW (2004) Evaluation of a 2D diode array for IMRT quality assurance. Radiother Oncol 70(2):199–206

    Article  PubMed  Google Scholar 

  23. Abtahi SMM, Sadeghi Abandansari H (2017) Polymer gel dosimeters with PVA–GA matrix. Australas Phys Eng Sci Med 40:651–658

    Article  PubMed  Google Scholar 

  24. Brown S, Venning A, De Deene Y, Vial P, Oliver L, Adamovics J, Baldock C (2008) Radiological properties of the PRESAGE and PAGAT polymer dosimeters. Appl Radiat Isot 66(12):1970–1974

    Article  CAS  PubMed  Google Scholar 

  25. Jordan K (2010) Review of recent advances in radiochromic materials for 3D dosimetry. J Phys Conf Ser 250(1):012043

    Article  Google Scholar 

  26. Mohyedin MZ, Zin HM, Adenan MZ, Abdul Rahman AT (2022) A review of PRESAGE radiochromic polymer and the compositions for application in radiotherapy dosimetry. Polymers. https://doi.org/10.3390/polym14142887

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brady SL, Brown WE, Clift CG, Yoo S, Oldham M (2010) Investigation into the feasibility of using PRESAGE™/optical-CT dosimetry for the verification of gating treatments. Phys Med Biol 55(8):2187

    Article  PubMed  PubMed Central  Google Scholar 

  28. Doran SJ, Krstajic N, Adamovics J, Jenneson PM (2004) Optical CT scanning of PRESAGE™ polyurethane samples with a CCD-based readout system. J Phys Conf Ser 3(1):240

    Article  Google Scholar 

  29. Sakhalkar HS, Oldham M (2008) Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation. Med Phys 35(1):101–111

    Article  CAS  PubMed  Google Scholar 

  30. Zin HM, Taufek A, Rahman A (2022) Application of an in-house developed complementary metal-oxide-semiconductor-based optical computed tomography (CMOS-OCT) imaging system for stereotactic radiosurgery dosimetry using a PRESAGE ® dosimeter. Radiat Phys Chem 194(January):110029. https://doi.org/10.1016/j.radphyschem.2022.110029

    Article  CAS  Google Scholar 

  31. Mohyedin MZ, Zin HM, Hashim S, Bradley DA, Aldawood S, Alkhorayef M, Sulieman A, Abdul Rahman AT (2022) 2D and 3D dose analysis of PRESAGE® dosimeter using a prototype 3DmicroHD-OCT imaging system. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2022.110312

    Article  Google Scholar 

  32. Agnew CE, McGarry CK (2016) A tool to include gamma analysis software into a quality assurance program. Radiother Oncol 118(3):568–573

    Article  PubMed  Google Scholar 

  33. Low DA, Dempsey JF (2003) Evaluation of the gamma dose distribution comparison method. Med Phys 30(9):2455–2464. https://doi.org/10.1118/1.1598711

    Article  PubMed  Google Scholar 

  34. Lewis D, Micke A, Yu X, Chan MF (2012) An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys 39(10):6339–6350

    Article  PubMed  PubMed Central  Google Scholar 

  35. Palmer AL, Bradley D, Nisbet A (2014) Evaluation and implementation of triple-channel radiochromic film dosimetry in brachytherapy. J Appl Clin Med Phys 15(4):280–296

    Article  PubMed Central  Google Scholar 

  36. Khezerloo D, Nedaie HA, Farhood B, Zirak A, Takavar A, Banaee N, Ahmadalidokht I, Kron T (2017) Optical computed tomography in PRESAGE® three-dimensional dosimetry: challenges and prospective. J Cancer Res Ther 13(3):419–424

    CAS  PubMed  Google Scholar 

  37. Krstajić N, Doran SJ (2007) Characterization of a parallel-beam CCD optical-CT apparatus for 3D radiation dosimetry. Phys Med Biol 52(13):3693

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Malaysia Ministry of Higher Education (MOHE) under the Fundamental Research Grant Scheme Fund, 600-IRMI/FRGS 5/3 (412/2019). We would like to thank Umar Baharom from IMT Inc. for fabricating the PRESAGE® insert design. Additionally, we extend our gratitude to the Advanced Medical & Dental Institute, Universiti Sains Malaysia, for providing the facilities to conduct the irradiation. We are also grateful to Universiti Teknologi MARA (UiTM) for granting access to the Atomic Physics & Radiation Laboratory, Faculty of Applied Sciences, and the Radiation Laboratory, Institute of Science. Special thanks go to Nurul Wahida Aziz and Mohd Shahrulrizan Ibrahim for their technical support throughout this study.

Funding

This work was supported by the Malaysia Ministry of Higher Education (MOHE) under the Fundamental Research Grant Scheme Fund, 600-IRMI/FRGS 5/3 (412/2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Muhammad Zamir Mohyedin and Hafiz Mohd Zin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding authors

Correspondence to Hafiz Mohd Zin or Ahmad Taufek Abdul Rahman.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyedin, M.Z., Zin, H.M., Abubakar, A. et al. Study of PRESAGE® dosimeter for end-to-end 3D radiotherapy verification using an anthropomorphic phantom with bespoke dosimeter insert. Phys Eng Sci Med (2024). https://doi.org/10.1007/s13246-024-01418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13246-024-01418-9

Keywords

Navigation