Log in

Numerical Methodology to Evaluate Trackability and Pushability of PTCA Balloon Catheter

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

During percutaneous coronary intervention (PCI), the ability to navigate a catheter without causing injury to the vessel and damage to the device is crucial outcome of the procedure. This study aimed to develop a numerical model to analyse the percutaneous transluminal coronary angioplasty (PTCA) catheter navigation in coronary vessels.

Methods

Trackability and pushability are two major parameters used to characterize the navigation of PTCA balloon catheters, and they are influenced by vessel tortuosity, contact interactions and catheter design. In the current study, finite element analysis model is presented to evaluate trackability and pushability considering two different vessel geometries. Impact of contact interactions among catheter, guidewire, and vessel were studied to validate the numerical model with in vitro test data. Further, a parametric study was conducted to understand the influence of distal shaft, and proximal shaft outer diameter.

Results

Obtained results suggest that contact interaction and co-efficient of friction between guidewire and catheter are critical parameters to obtain numerical results comparable to experimental data. Results from the parametric study predicted strong positive correlation of distal shaft diameter on pushability, and weak correlation on trackability force. Furthermore, parametric variation in proximal shaft diameter has strong positive correlation on trackability force and strong negative correlation on pushability.

Conclusion

Numerical methodology presented in this study is a preliminary attempt to simulate the behavior of PTCA balloon catheter navigation. This methodology will be helpful in the design and optimization of PTCA balloon catheter and similar devices with improved deliverability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Anderson, J. H., and R. Raghavan. A vascular catheterization simulator for training and treatment planning. J. Digit. Imaging. 1998. https://doi.org/10.1007/BF03168278.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boyden, B. G., A. Nilajkar, and C. J. O’Neil. The effects of type and loading of radiopaque fillers on the properties of polyether block amide compounds. Plast. Eng. 2013. https://doi.org/10.1002/j.1941-9635.2013.tb01067.x.

    Article  Google Scholar 

  3. Bukala, J., P. Kwiatkowski, and J. Malachowski. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern. Biomed. Eng. 2016. https://doi.org/10.1016/j.bbe.2015.10.009.

    Article  Google Scholar 

  4. Cai, Y. Y., C.-K. Chui, X. Ye, J. H. Anderson, K.-M. Liew, and I. Sakuma. Simulation-based virtual prototy** of customized catheterization devices. J. Comput. Inf. Sci. Eng. 2004. https://doi.org/10.1115/1.1705667.

    Article  Google Scholar 

  5. Cantor, W. J., C. Lazzam, E. A. Cohen, K. A. Bowman, S. Dolman, K. Mackie, M. K. Natarajan, and B. H. Strauss. Failed coronary stent deployment. Am. Heart J. 1998. https://doi.org/10.1016/s0002-8703(98)70168-1.

    Article  PubMed  Google Scholar 

  6. Chalon, A., J. Favre, B. Piotrowski, V. Landmann, D. Grandmougin, J.-P. Maureira, P. Laheurte, and N. Tran. Contribution of computational model for assessment of heart tissue local stress caused by suture in LVAD implantation. J. Mech. Behav. Biomed. Mater. 2018. https://doi.org/10.1016/j.jmbbm.2018.03.032.

    Article  PubMed  Google Scholar 

  7. Committee ASMH. Properties and Selection: Irons, Steels, and High-Performance Alloys. Committee ASMH, 1990. https://doi.org/10.31399/asm.hb.v01.9781627081610.

  8. Dehghani, P., A. Mohammad, R. Bajaj, T. Hong, C. M. Suen, W. Sharieff, R. J. Chisholm, M. J. B. Kutryk, N. P. Fam, and A. N. Cheema. Mechanism and predictors of failed transradial approach for percutaneous coronary interventions. JACC Cardiovasc. Interv. 2009. https://doi.org/10.1016/j.jcin.2009.07.014.

    Article  PubMed  Google Scholar 

  9. Duratti, L., F. Wang, E. Samur, and H. Bleuler. A Real-Time Simulator for Interventional Radiology. 2008. https://doi.org/10.1145/1450579.1450602.

  10. Finn, R., and L. Morris. An experimental assessment of catheter trackability forces with tortuosity parameters along patient-specific coronary phantoms. Proc. Inst. Mech. Eng. H. 2016. https://doi.org/10.1177/0954411915623815.

    Article  PubMed  Google Scholar 

  11. Girish, M. P., M. D. Gupta, and A. Mittal. Percutaneous retrieval of entrapped partially inflated broken coronary angioplasty balloon by modified Fogarty technique. J. Invasive Cardiol. 23(7):E173–E176, 2011.

    CAS  PubMed  Google Scholar 

  12. Ho, H. H., F. H. Jafary, K. K. Loh, J. K. B. Tan, Y. W. Ooi, and P. J. L. Ong. Deliverability of integrity coronary stents in severely tortuous coronary arteries: a preliminary experience. J. Invasive Cardiol. 2012. https://doi.org/10.1016/j.amjcard.2012.01.231.

    Article  PubMed  Google Scholar 

  13. Kazmierska, K., M. Szwast, and T. Ciach. Determination of urethral catheter surface lubricity. J. Mater. Sci. Mater. Med. 2008. https://doi.org/10.1007/s10856-007-3339-4.

    Article  PubMed  Google Scholar 

  14. Kharge, J., P. Sreekumar, K. Swamy, A. Bharatha, R. T. Ramegowda, and M. C. Nanjappa. Balloon-assisted retrieval of a broken stent-delivery system. Tex. Heart Inst. J. 39(5):644–646, 2012.

    PubMed  PubMed Central  Google Scholar 

  15. Kumar, S., A. L. Innasimuthu, and J. D. Marmur. The nature and pattern of coronary stent recalls. J. Invasive Cardiol. 26(9):433–436, 2014.

    PubMed  Google Scholar 

  16. Kunwar, B. K., P. Jain, and M. Ghogare. Catheter-assisted balloon-supported retrieval of a broken semi-compliant balloon from a coronary artery. J. Clin. Diagn. Res. 2017. https://doi.org/10.7860/JCDR/2017/24775.9580.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lawton, W., R. Raghavan, S. R. Ranjan, and R. R. Viswanathan. Tubes in tubes: catheter navigation in blood vessels and its applications. Int. J. Solids Struct. 2000. https://doi.org/10.1016/S0020-7683(99)00067-0.

    Article  Google Scholar 

  18. Li, Y., C. Shen, Y. Ji, Y. Feng, G. Ma, and N. Liu. Clinical implication of coronary tortuosity in patients with coronary artery disease. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0024232.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martin, D., and F. Boyle. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Int. J. Numer. Methods Biomed. Eng. 2013. https://doi.org/10.1002/cnm.2557.

    Article  Google Scholar 

  20. Morris, L., P. Fahy, F. Stefanov, and R. Finn. The effects that cardiac motion has on coronary hemodynamics and catheter trackability forces for the treatment of coronary artery disease: an in vitro assessment. Cardiovasc. Eng. Technol. 2015. https://doi.org/10.1007/s13239-015-0241-y.

    Article  PubMed  Google Scholar 

  21. Nikolsky, E., L. Gruberg, S. Pechersky, M. Kapeliovich, E. Grenadier, S. Amikam, M. Boulos, M. Suleiman, W. Markiewicz, and R. Beyar. Stent deployment failure: reasons, implications, and short- and long-term outcomes. Catheter Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2003. https://doi.org/10.1002/ccd.10543.

  22. Prasad, A., C. S. Rihal, R. J. Lennon, H. J. Wiste, M. Singh, and D. R. J. Holmes. Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the Mayo Clinic. J. Am. Coll. Cardiol. 2007. https://doi.org/10.1016/j.jacc.2006.12.040.

    Article  PubMed  Google Scholar 

  23. Rahinj, G. B., H. S. Chauhan, M. L. Sirivella, M. V. Satyanarayana, and L. Ramanan. Numerical analysis for non-uniformity of balloon-expandable stent deployment driven by dogboning and foreshortening. Cardiovasc. Eng. Technol. 2021. https://doi.org/10.1007/s13239-021-00573-4.

    Article  PubMed  Google Scholar 

  24. Rieu, R., P. Barragan, V. Garitey, P. O. Roquebert, J. Fuseri, P. Commeau, and J. Sainsous. Assessment of the trackability, flexibility, and conformability of coronary stents: a comparative analysis. Catheter Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2003. https://doi.org/10.1002/ccd.10583.

  25. Schmidt, W., N. Grabow, P. Behrens, and K. P. Schmitz. Trackability, crossability, and pushability of coronary stent systems—an experimental approach. Biomed. Tech. (Berl.). 2002. https://doi.org/10.1515/bmte.2002.47.s1a.124.

    Article  PubMed  Google Scholar 

  26. Schmidt, W., and P. Lanzer. Instrumentation BT—Catheter-Based Cardiovascular Interventions: A Knowledge-Based Approach, edited by P. Lanzer. Berlin: Springer, 2013. https://doi.org/10.1007/978-3-642-27676-7_27.

  27. Schmidt, W., P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz. A comparison of the mechanical performance characteristics of seven drug-eluting stent systems. Catheter Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2009. https://doi.org/10.1002/ccd.21832.

  28. Sharei, H., T. Alderliesten, J. J. van den Dobbelsteen, and J. Dankelman. Navigation of guidewires and catheters in the body during intervention procedures: a review of computer-based models. J. Med. Imaging (Bellingham Wash.). 2018. https://doi.org/10.1117/1.JMI.5.1.010902.

    Article  Google Scholar 

  29. Sharei, H., J. Kieft, K. Takashima, N. Hayashida, J. J. van den Dobbelsteen, and J. Dankelman. A rigid multibody model to study the translational motion of guidewires based on their mechanical properties. J. Comput. Nonlinear Dyn. 2019. https://doi.org/10.1115/1.4043618.

    Article  Google Scholar 

  30. Teo, A. J. T., A. Mishra, I. Park, Y.-J. Kim, W.-T. Park, and Y.-J. Yoon. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng. 2016. https://doi.org/10.1021/acsbiomaterials.5b00429.

    Article  PubMed  Google Scholar 

  31. Trehan, V., S. Mukhopadhyay, J. C. Yusuf, U. Ramgasetty, S. Mukherjee, and R. Arora. Intracoronary fracture and embolization of a coronary angioplasty balloon catheter: retrieval by a simple technique. Catheter Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2003. https://doi.org/10.1002/ccd.10477.

  32. Turgut, O., A. Yilmaz, K. Yalta, B. M. Yilmaz, A. Ozyol, O. Kendirlioglu, F. Karadas, and I. Tandogan. Tortuosity of coronary arteries: an indicator for impaired left ventricular relaxation? Int. J. Cardiovasc. Imaging. 2007. https://doi.org/10.1007/s10554-006-9186-4.

    Article  PubMed  Google Scholar 

  33. Wani, S. P., S.-W. Rha, J. Y. Park, K. L. Poddar, L. Wang, S. Ramasamy, J. M. Moon, J. B. Kim, S. R. Ryu, S. Y. Shin, U.-J. Choi, C. U. Choi, H. E. Lim, J. W. Kim, E. J. Kim, C. G. Park, H. S. Seo, and D. J. Oh. A novel technique for retrieval of a drug-eluting stent after catheter break and stent loss. Korean Circ. J. 2010. https://doi.org/10.4070/kcj.2010.40.8.405.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu, J., H. Wang, P. Zhang, X. Ma, and Q. Hu. A preliminary real-time and realistic simulation environment for percutaneous coronary intervention. Biomed. Res. Int. 2015. https://doi.org/10.1155/2015/183157.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the management of Sahajanand Medical Technologies Ltd. for providing motivation and support to carry out the research work.

Author Contributions

Study conception and design: MLS, MVS and LR. Acquisition of data: MLS, GBR, MVS and HSC. Analysis and interpretation of data: MLS, MVS, GBR and HSC. Drafting of manuscript: MLS. Critical revision: All authors reviewed the manuscript critically.

Funding

Not applicable.

Data Availability

Due to its proprietary nature, supporting data cannot be made publicly available and are available from the corresponding author upon reasonable request.

Consent for Publication

Not applicable.

Conflict of interest

All authors are employees of Sahajanand Medical Technologies Ltd. and report no other conflicts of interest in this work.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Sirivella.

Additional information

Associate Editor Alessandro Veneziani oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirivella, M.L., Rahinj, G.B., Chauhan, H.S. et al. Numerical Methodology to Evaluate Trackability and Pushability of PTCA Balloon Catheter. Cardiovasc Eng Tech 14, 315–330 (2023). https://doi.org/10.1007/s13239-022-00653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00653-z

Keywords

Navigation