Log in

Inadequacy of Augmentation Index for Monitoring Arterial Stiffness: Comparison with Arterial Compliance and Other Hemodynamic Variables

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Augmentation Index (AIx) is used clinically for monitoring both wave reflections and arterial stiffness, which when increased is a risk factor of cardiovascular mortality and morbidity. We hypothesize that AIx is not solely related to vascular stiffness as described by arterial compliance and other hemodynamic parameters since AIx underestimates wave reflections.

Methods

Aortic pressure and flow datasets (n = 42) from mongrel dogs were obtained from our experiments and Mendeley Data under various conditions. Arterial compliances based on the Windkessel model (Ct), the stroke volume (SV) to pulse pressure (PP) ratio (Cv = SV/PP), and at inflection pressure point (CPi) were computed. Other relevant hemodynamic factors are also computed.

Results

AIx was poorly associated with arterial stiffness calculated from Ct (r = 0.299, p = 0.058) or CPi (r = 0.203, p = 0.203), even when adjusted for heart rates. Ct and Cv were monotonically associated. Alterations in inflection pressure (Pi) did not follow the changes in pulse pressure (PP) (r = 0.475, p = 0.002), and Pi was quantitatively similar to systolic pressure (r = 0.940, p < 0.001).

Conclusion

AIx is neither linearly correlated with arterial stiffness, nor with arterial compliance and several cardiac and arterial parameters have to be considered when AIx is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ali, A. T., W. P. Santamore, B. Y. Chiang, R. D. Dowling, G. R. Tobin, and A. D. Slater. Vascular delay of the Latissimus dorsi provides an early hemodynamic benefit in dynamic cardiomyoplasty. Ann. Thorac. Surg. 67:1304–1311, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Avolio, A. P., L. M. Van Bortel, P. Boutouyrie, J. R. Cockcroft, C. M. McEniery, A. D. Protogerou, and H. Smulyan. Role of pulse pressure amplification in arterial hypertension. Hypertension. 54(2):375–383, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. Berger, D. S., and J.K.-J. Li. Concurrent compliance reduction and increased peripheral resistance in the manifestation of isolated systolic hypertension. Am. J. Cardiol. 65(1):67–71, 1990.

    Article  CAS  PubMed  Google Scholar 

  4. Briet, M., P. Boutouyrie, S. Laurent, and G. M. London. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 82(4):388–400, 2012.

    Article  PubMed  Google Scholar 

  5. Burattini, R., S. Natalucci, and K. B. Campbell. Viscoelasticity modulates resonance in the terminal aortic circulation. Med. Eng. Phys. 21:175–185, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Cameron, J. D., B. P. Mcgrath, and A. M. Dart. Use of radial artery applanation tonometry and a generalized transfer function to determine aortic pressure augmentation in subjects with treated hypertension. J. Am. Coll. Cardiol. 32(5):1214–1220, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Chemla, D., J. L. Hébert, C. Coirault, K. Zamani, I. Suard, P. Colin, and Y. Lecarpentier. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am. J. Physiol. Heart Circ. Physiol. 274(2):43, 1998.

    Article  Google Scholar 

  8. Climie, R. E. D., S. B. Nikolic, P. Otahal, L. J. Keith, and J. E. Sharman. Augmentation index and arterial stiffness in patients with type 2 diabetes mellitus. Artery Res. 7(3–4):194–200, 2013.

    Article  Google Scholar 

  9. Dujardin, J. P., and D. N. Stone. Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. Med. Biol. Eng. Comput. 19:565–568, 1981.

    Article  CAS  PubMed  Google Scholar 

  10. Dujardin, J. P., D. N. Stone, L. T. Paul, and H. P. Pieper. Response of systemic arterial input impedance to volume expansion and hemorrhage. Αm. J. Physiol. 238:H902–H908, 1980.

    CAS  Google Scholar 

  11. Fogliardi, R., M. di Donfrancesco, and R. Burattini. Comparison of linear and nonlinear formulations of the three-element windkessel model. Am. J. Physiol. 271:H2661–H2668, 1996.

    CAS  PubMed  Google Scholar 

  12. Gnudi, G. New closed-form expressions for the estimation of arterial windkessel compliance. Comput. Biol. Med. 28:207–223, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Gurovich, A. N., W. W. Nichols, R. W. Braith, and C. R. Conti. Patients with refractory angina have increased aortic wave reflection and wasted left ventricular pressure energy. Artery Res. 8(1):9–15, 2014.

    Article  Google Scholar 

  14. Heusinkveld, M. H. G., T. Delhaas, J. Lumens, W. Huberts, B. Spronck, A. D. Hughes, and K. D. Reesink. Augmentation index is not a proxy for wave reflection magnitude: mechanistic analysis using a computational model. J. Appl. Physiol. 127(2):491–500, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Higashidate, M., K. Tamiya, T. Beppu, and Y. Imai. Regulation of the aortic valve opening. In vivo dynamic measurement of aortic valve orifice area. J. Thorac. Cardiovasc. Surg. 110:496–503, 1995.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes, A. D., C. Park, J. Davies, D. Francis, S. A. McG Thom, J. Mayet, and K. H. Parker. Limitations of augmentation index in the assessment of wave reflection in normotensive healthy individuals. PLoS ONE. 8(3):e59371, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaya, M., V. Balasubramanian, Y. Ge, and J.K.-J. Li. Energetically wasteful wave reflections due to impedance mismatching in hypertension and their reversal with vasodilator: time and frequency domain evaluations. Comput. Biol. Med. 104:117–126, 2019.

    Article  PubMed  Google Scholar 

  18. Kaya, M., V. Balasubramanian, and J.K.-J. Li. Augmentation index in the assessment of wave reflections and systolic loading. Comput. Biol. Med. 113:103418, 2019.

    Article  CAS  PubMed  Google Scholar 

  19. Kaya, M., V. Balasubramanian, A. Patel, Y. Ge, and J.K.-J. Li. A novel compliance-pressure loop approach to quantify arterial compliance in systole and in diastole. Comput. Biol. Med. 99:98–106, 2018.

    Article  PubMed  Google Scholar 

  20. Kelly, R. P., S. C. Millasseau, J. M. Ritter, and P. J. Chowienczyk. Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension. 37(6):1429–1433, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Khir, A. W., and K. H. Parker. Wave intensity in the ascending aorta: effects of arterial occlusion. J. Biomech. 38:647–655, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Laurent, S., J. Cockcroft, L. Van Bortel, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27(21):2588–2605, 2006.

    Article  PubMed  Google Scholar 

  23. Lehmann, E. D., R. G. Gosling, and P. H. Sönksen. Arterial wall compliance in diabetes. Diabetic Med. 9(2):114–119, 1992.

    Article  CAS  PubMed  Google Scholar 

  24. Li, J.K.-J. Dynamics of the Vascular System and Interaction with the Heart, 2nd ed. Singapore: World Scientific, 2018.

    Book  Google Scholar 

  25. Li, J.K.-J. Cardiovascular allometry: analysis, methodology, and clinical applications. In: Sex-Specific Analysis of Cardiovascular Function, edited by P. L. M. Kerkhof, and V. M. Miller. Cham: Springer, 2018, pp. 207–224.

    Chapter  Google Scholar 

  26. Li, J.K.-J., Y. Zhu, D. O’Hara, and K. Khaw. Allometric hemodynamic analysis of isolated systolic hypertension and aging. Cardiovasc. Eng. (Dordrecht, Netherlands). 7(4):135–139, 2007.

    Google Scholar 

  27. Mahmud, A., and J. Feely. β-blockers reduce aortic stiffness in hypertension but nebivolol, not atenolol, reduces wave reflection. Am. J. Hypertens. 21(6):663–667, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Mattace-Raso, F. U. S., T. J. M. Van Der Cammen, A. Hofman, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 113(5):657–663, 2006.

    Article  PubMed  Google Scholar 

  29. McEniery, C. M., I. R. Yasmin Hall, A. Qasem, I. B. Wilkinson, and J. R. Cockcroft. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity - The Anglo-Cardiff Collaborative Trial (ACCT). J. Am. Coll. Cardiol. 46(9):1753–1760, 2005.

    Article  PubMed  Google Scholar 

  30. McVeigh, G. E., C. W. Bratteli, D. J. Morgan, C. M. Alinder, S. P. Glasser, S. M. Finkelstein, and J. N. Cohn. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension (Dallas, 1979). 33(6):1392–1398, 1999.

    Article  CAS  Google Scholar 

  31. Mitchell, G. F., Y. Lacourcière, J. M. O. Arnold, M. E. Dunlap, P. R. Conlin, and J. L. Izzo. Changes in aortic stiffness and augmentation index after acute converting enzyme or vasopeptidase inhibition. Hypertension. 46(5):1111–1117, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Namasivayam, M., B. J. McDonnell, C. M. McEniery, and M. F. O’Rourke. Does wave reflection dominate age-related change in aortic blood pressure across the human life span? Hypertension. 53(6):979–985, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Nichols, W. W., and B. M. Singh. Augmentation index as a measure of peripheral vascular disease state. Current Opin. Cardiol. 17(5):543–551, 2002.

    Article  Google Scholar 

  34. O’Rourke, M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension. 15(4):339–347, 1990.

    Article  PubMed  Google Scholar 

  35. O’Rourke, M. F., and G. Mancia. Arterial stiffness. J. Hypertension. 17(1):1–4, 1999.

    Article  Google Scholar 

  36. Pannier, B. M., A. P. Avolio, A. Hoeks, G. Mancia, and K. Takazawa. Methods and devices for measuring arterial compliance in humans. Am. J. Hypertens. 15(8):743–753, 2002.

    Article  PubMed  Google Scholar 

  37. Pannier, B., A. P. Guérin, S. J. Marchais, M. E. Safar, and G. M. London. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension. 45(4):592–596, 2005.

    Article  CAS  PubMed  Google Scholar 

  38. Patel, B. G., S. H. Shah, L. I. Astra, R. L. Hammond, Z. A. Sharif, P. J. McDonald, and L. W. Stephenson. Skeletal muscle ventricle aortic counterpulsation: function during chronic heart failure. Ann. Thorac. Surg. 73:588–593, 2002.

    Article  PubMed  Google Scholar 

  39. Safar, M. E., B. I. Levy, and H. Struijker-Boudier. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases special review: current perspective. Circulation. 107:2864–2869, 2003.

    Article  PubMed  Google Scholar 

  40. Safar, M. E., P. M. Nilsson, J. Blacher, and A. Mimran. Pulse pressure, arterial stiffness, and end-organ damage. Current Hypertens. Rep. 14(4):339–344, 2012.

    Article  Google Scholar 

  41. Segers, P., J. De Backer, D. Devos, et al. Aortic reflection coefficients and their association with global indexes of wave reflection in healthy controls and patients with Marfan’s syndrome. Am. J. Physiol. Heart Circ. Physiol. 290(6):H2385–H2392, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Segers, P., E. R. Rietzschel, M. L. De Buyzere, D. De Bacquer, L. M. Van Bortel, G. De Backer, and P. R. Verdonck. Assessment of pressure wave reflection: getting the timing right! Physiol. Meas. 28(9):1045–1056, 2007.

    Article  PubMed  Google Scholar 

  43. Sharman, J. E., J. E. Davies, C. Jenkins, and T. H. Marwick. Augmentation index left ventricular contractility, and wave reflection. Hypertension. 54(5):1099–1105, 2009.

    Article  CAS  PubMed  Google Scholar 

  44. Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2):45, 1999.

    Article  Google Scholar 

  45. Stoner, L., J. Faulkner, A. Lowe, R. Love, et al. Should the augmentation index be normalized to heart rate? J. Atheroscler. Thromb. 21(1):11–16, 2014.

    Article  PubMed  Google Scholar 

  46. Tartière, J. M., D. Logeart, M. E. Safar, and A. Cohen-Solal. Interaction between pulse wave velocity, augmentation index, pulse pressure and left ventricular function in chronic heart failure. J. Hum. Hypertens. 20(3):213–219, 2006.

    Article  PubMed  Google Scholar 

  47. Tillin, T., J. Chambers, I. Malik, et al. Measurement of pulse wave velocity: site matters. J. Hypertens. 25(2):383–389, 2007.

    Article  CAS  PubMed  Google Scholar 

  48. Torjesen, A. A., N. Wang, M. G. Larson, et al. Forward and backward wave morphology and central pressure augmentation in men and women in the Framingham heart study. Hypertension. 64(2):259–265, 2014.

    Article  CAS  PubMed  Google Scholar 

  49. Townsend, R. R., I. B. Wilkinson, E. L. Schiffrin, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 66(3):698–722, 2015.

    Article  CAS  PubMed  Google Scholar 

  50. Van Bortel, L. M., S. Laurent, P. Boutouyrie, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 30(3):445–448, 2012.

    Article  PubMed  Google Scholar 

  51. Wang, J. J., J. C. Bouwmeester, I. Belenkie, N. G. Shrive, and J. V. Tyberg. Alterations in aortic wave reflection with vasodilation and vasoconstriction in anaesthetized dogs. Can. J. Cardiol. 29:243–253, 2013.

    Article  PubMed  Google Scholar 

  52. Westerhof, B. E., and N. Westerhof. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. J. Hypertens. 30(5):932–939, 2012.

    Article  CAS  PubMed  Google Scholar 

  53. Westerhof, N., and B. E. Westerhof. A review of methods to determine the functional arterial parameters stiffness and resistance. J. Hypertens. 31(9):1769–1775, 2013.

    Article  CAS  PubMed  Google Scholar 

  54. Westerhof, N., and B. E. Westerhof. Waves and Windkessels Reviewed. Artery Research. Amsterdam: Elsevier, 2017.

    Google Scholar 

  55. Zhang, Y., D. Agnoletti, A. D. Protogerou, et al. Characteristics of pulse wave velocity in elastic and muscular arteries: a mismatch beyond age. J. Hypertens. 31(3):554–559, 2013.

    Article  PubMed  Google Scholar 

Download references

Author Contributions

All authors contributed to the study conception and design. All authors contributed to writing the manuscript and all authors read and approved the final manuscript.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial or not-for-profit sectors.

Data Availability

Data will be made available on request.

Code Availability

Code will be made available on request.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kaya.

Additional information

Associate Editor Igor Efimov oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, M., Balasubramanian, V. & Li, J.KJ. Inadequacy of Augmentation Index for Monitoring Arterial Stiffness: Comparison with Arterial Compliance and Other Hemodynamic Variables. Cardiovasc Eng Tech 13, 590–602 (2022). https://doi.org/10.1007/s13239-021-00605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00605-z

Keywords

Navigation