Log in

Association of ABCC4 G559T single nucleotide polymorphism with arsenic-induced precancerous hyperkeratosis

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Chronic arsenic toxicity, a global health issue, leads to multiple skin cancers. Only 15–20% of exposed individuals ever develop arsenic-specific skin lesions highlighting the role of genetic polymorphisms in inter-individual susceptibility. Multidrug resistance proteins (MRPs), encoded by ATP binding cassette transporter subfamily C (ABCC) genes are demonstrated to efflux arsenic metabolites. MRP4 encoded by ABCC4 is a high-affinity efflux transporter of diglutathionylated monomethyl arsonous acid [MMA(GS)2] and dimethyl arsenic acid (DMAV).The association of ABCC4 polymorphisms with arsenic-disease susceptibility is unknown. The possible association of five previously characterized non-synonymous ABCC4 SNPs with arsenic-induced premalignant hyperkeratosis was examined in the study. A total of 230 study participants were recruited from the highly arsenic-exposed district of Murshidabad in West Bengal, India (136 cases with arsenic-induced premalignant hyperkeratosis; 94 controls with no arsenic-specific skin lesions). Cases and controls were matched in exposure status and demographic variables apart from age. Exposure assessment was performed by total arsenic content analysis of water and urine, while genoty** was performed employing PCR-Sanger sequencing or PCR-RFLP. Our population was monomorphic for 4 of the 5 SNPs studied. Age-adjusted Odds ratio showed the presence of at least one T allele for ABCC4 codon polymorphism confers protection against premalignant hyperkeratosis [OR (95% CI): 0.994 (0.888–0.998)].

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data and material regarding the present study are available with the corresponding author and can be shared on request.

References

  1. Abla N, Chinn LW, Nakamura T, Liu L, Huang CC, Johns SJ, Kawamoto M, Stryke D, Taylor TR, Ferrin TE, Giacomini KM. The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene. J Pharmacol Exp Ther. 2008;325(3):859–68.

    Article  CAS  PubMed  Google Scholar 

  2. Alex L, Chahil JK, Lye SH, Bagali P, Ler LW. Differences in allele frequencies of autosomal dominant hypercholesterolemia SNPs in the malaysian population. J Hum Genet. 2012;57(6):358–62.

    Article  CAS  PubMed  Google Scholar 

  3. Arana MR, Altenberg GA. ATP-binding cassette exporters: structure and mechanism with a focus on P-glycoprotein and MRP1. Curr Med Chem. 2019;26(7):1062–78.

    Article  CAS  PubMed  Google Scholar 

  4. Banerjee M, Sarkar J, Das JK, Mukherjee A, Sarkar AK, Mondal L, Giri AK. Polymorphism in the ERCC2 codon 751 is associated with arsenic-induced premalignant hyperkeratosis and significant chromosome aberrations. Carcinogenesis. 2007;28(3):672–6.

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee M, Bhattacharjee P, Giri AK. Arsenic-induced cancers: a review with special reference to gene, environment and their interaction. Genes Environ. 2011;33(4):128–40.

    Article  CAS  Google Scholar 

  6. Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK. High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep. 2013;3(1): 2195.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Banerjee M, Carew MW, Roggenbeck BA, Whitlock BD, Naranmandura H, Le XC, Leslie EM. A novel pathway for arsenic elimination: human multidrug resistance protein 4 (MRP4/ABCC4) mediates cellular export of dimethylarsinic acid (DMAV) and the diglutathione conjugate of monomethylarsonous acid (MMAIII). Mol Pharmacol. 2014;86(2):168–79.

    Article  PubMed  Google Scholar 

  8. Banerjee M, Marensi V, Conseil G, Le XC, Cole SP, Leslie EM. Polymorphic variants of MRP4/ABCC4 differentially modulate the transport of methylated arsenic metabolites and physiological organic anions. Biochem Pharmacol. 2016;120:72–82.

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee M, Kaur G, Whitlock BD, Carew MW, Le XC, Leslie EM. Multidrug resistance protein 1 (MRP1/ABCC1)-mediated cellular protection and transport of methylated arsenic metabolites differs between human cell lines. Drug Metab Dispos. 2018;46(8):1096–105.

    Article  CAS  PubMed  Google Scholar 

  10. Becerra E, Aguilera-Duran G, Berumen L, Romo-Mancillas A, Garcia-Alcocer G. Study of endogen substrates, drug substrates and inhibitors binding conformations on MRP4 and its variants by molecular docking and molecular dynamics. Molecules. 2021;26(4): 1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buchet JP, Pauwels J, Lauwerys R. Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers. Environ Res. 1994;66(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  12. Carew MW, Leslie EM. Selenium-dependent and-independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): implications for the mutual detoxification of arsenic and selenium. Carcinogenesis. 2010;31(8):1450–5.

    Article  CAS  PubMed  Google Scholar 

  13. Chen YC, Su HJ, Guo YL, Houseman EA, Christiani DC. Interaction between environmental tobacco smoke and arsenic methylation ability on the risk of bladder cancer. Cancer Causes Control. 2005;16:75–81.

    Article  PubMed  Google Scholar 

  14. Chen Y, Hall M, Graziano JH, Slavkovich V, Van Geen A, Parvez F, Ahsan H. A prospective study of blood selenium levels and the risk of arsenic-related premalignant skin lesions. Cancer Epidemiol Biomark Prev. 2007;16(2):207–13.

    Article  CAS  Google Scholar 

  15. Chung CJ, Pu YS, Su CT, Chen HW, Huang YK, Shiue HS, Hsueh YM. Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma. Cancer Causes Control. 2010;21:1605–13.

    Article  PubMed  Google Scholar 

  16. Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM, Deeley RG. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 1994;54(22):5902–10.

    CAS  PubMed  Google Scholar 

  17. Ghosh P, Banerjee M, De Chaudhuri S, Chowdhury R, Das JK, Mukherjee A, Sarkar AK, Mondal L, Baidya K, Sau TJ, Banerjee A. Comparison of health effects between individuals with and without skin lesions in the population exposed to arsenic through drinking water in West Bengal, India. J Expo Sci Environ Epidemiol. 2007;17(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh P, Banerjee M, Giri AK, Ray K. Toxicogenomics of arsenic: classical ideas and recent advances. Mutat Res Rev Mutat Res. 2008;659(3):293–301.

    Article  CAS  Google Scholar 

  19. Gribble MO, Voruganti VS, Cropp CD, Francesconi KA, Goessler W, Umans JG, Silbergeld EK, Laston SL, Haack K, Kao WH, Fallin MD. SLCO1B1 variants and urine arsenic metabolites in the strong Heart Family Study. Toxicol Sci. 2013;136(1):19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez A, Marcos R. Genetic variations associated with interindividual sensitivity in the response to arsenic exposure. Pharmacogenomics. 2008;9:1113–32.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu KH, Tsui KH, Hsu LI, Chiou HY, Chen CJ. Dose–response relationship between inorganic arsenic exposure and lung cancer among arseniasis residents with low methylation capacity. Cancer Epidemiol Biomark Prev. 2017;26(5):756–61.

    Article  CAS  Google Scholar 

  22. Huang Z, Pei Q, Sun G, Zhang S, Liang J, Gao Y, Zhang X. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions. Clin Chim Acta. 2008;387(1–2):139–44.

    Article  CAS  PubMed  Google Scholar 

  23. Huang CY, Lin YC, Shiue HS, Chen WJ, Su CT, Pu YS, Ao PL, Hsueh YM. Comparison of arsenic methylation capacity and polymorphisms of arsenic methylation genes between bladder cancer and upper tract urothelial carcinoma. Toxicol Lett. 2018;295:64–73.

    Article  CAS  PubMed  Google Scholar 

  24. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39(7):870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hutchinson J. Arsenic-kerotosis and arsenic-cancer. Trans Path Soc (Lond). 1888;39:352.

    Google Scholar 

  26. Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem. 2000;275(43):33404–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kaur G, Ponomarenko O, Zhou JR, Swanlund DP, Summers KL, Dolgova NV, Antipova O, Pickering IJ, George GN, Leslie EM. Studies of selenium and arsenic mutual protection in human HepG2 cells. Chemico-Biol Interact. 2020;327: 109162.

    Article  CAS  Google Scholar 

  28. Kaya-Akyüzlü D, Kayaaltı Z, Doğan D, Söylemezoğlu T. Does maternal MDR1 C1236T polymorphism have an effect on placental arsenic levels? Environ Toxicol Pharmacol. 2016;41:142–6.

    Article  PubMed  Google Scholar 

  29. Leese E, Morton J, Tan E, Gardiner PH, Carolan VA. µLC–ICP-MS determinations of unexposed UK urinary arsenic speciation reference values. J Anal Toxicol. 2014;38(1):24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leslie EM. Arsenic–glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem. 2012;108:141–9.

    Article  CAS  PubMed  Google Scholar 

  31. Leslie EM, Haimeur A, Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1): evidence that a tri-glutathione conjugate is required. J Biol Chem. 2004;279(31):32700–8.

    Article  CAS  PubMed  Google Scholar 

  32. Loffredo CA, Aposhian HV, Cebrian ME, Yamauchi H, Silbergeld EK. Variability in human metabolism of arsenic. Environ Res. 2003;92(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  33. Melkonian S, Argos M, Chen Y, Parvez F, Pierce B, Ahmed A, Islam T, Ahsan H. Intakes of several nutrients are associated with incidence of arsenic-related keratotic skin lesions in Bangladesh. J Nutr. 2012;142(12):2128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: from genetic susceptibility to pathogenesis. Environ Int. 2018;112:183–97.

    Article  CAS  PubMed  Google Scholar 

  35. Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, Le XC. Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chem Res Toxicol. 2011;24(9):1586–96.

    Article  CAS  PubMed  Google Scholar 

  36. Podgorski J, Berg M. Global threat of arsenic in groundwater. Science. 2020;368(6493):845–50.

    Article  CAS  PubMed  Google Scholar 

  37. Rehman K, Naranmandura H. Arsenic metabolism and thioarsenicals. Metallomics. 2012;4(9):881–92.

    Article  CAS  PubMed  Google Scholar 

  38. Roggenbeck BA, Carew MW, Charrois GJ, Douglas DN, Kneteman NM, Lu X, Le XC, Leslie EM. Characterization of arsenic hepatobiliary transport using sandwich-cultured human hepatocytes. Toxicol Sci. 2015;145(2):307–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci. 2016;49:38–58.

    Article  CAS  Google Scholar 

  40. Sanyal T, Bhattacharjee P, Bhattacharjee S. Hypomethylation of mitochondrial D-loop and ND6 with increased mitochondrial DNA copy number in the arsenic-exposed population. Toxicology. 2018;408:54–61.

    Article  CAS  PubMed  Google Scholar 

  41. Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M, Broberg K. Human adaptation to arsenic-rich environments. Mol Biol Evol. 2015;32(6):1544–55.

    Article  CAS  PubMed  Google Scholar 

  42. Slot AJ, Molinski SV, Cole SP. Mammalian multidrug-resistance proteins (MRPs). Essays Biochem. 2011;50:179–207.

    Article  CAS  PubMed  Google Scholar 

  43. Stajnko A, Šlejkovec Z, Mazej D, France-Štiglic A, Briški AS, Prpić I, Špirić Z, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in croatian-slovenian population from PHIME-CROME study. Environ Res. 2019;170:301–19.

    Article  CAS  PubMed  Google Scholar 

  44. States JC. Disruption of mitotic progression by arsenic. Biol Trace Elem Res. 2015;166:34–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thongnoppakhun W, Assawamakin A, Tongsima S. An abundance of population-specific monomorphic SNPs may or may not be meaningful: a commentary on differences in allele frequencies of familial hypercholesterolemia SNPs in the malaysian population. J Hum Genet. 2012;57(7):403–4.

    Article  CAS  PubMed  Google Scholar 

  46. Tsukamoto M, Yamashita M, Nishi T, Nakagawa H. A human ABC transporter ABCC4 gene SNP (rs11568658, 559 G > T, G187W) reduces ABCC4-dependent drug resistance. Cells. 2019;8(1): 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vahter M. Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett. 2000;112:209–17.

    Article  PubMed  Google Scholar 

  48. WHO Guidelines for Drinking-Water Quality (2011). Accessed fromhttps://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf.

  49. Yu S, Liao WT, Lee CH, Chai CY, Yu CL, Yu HS. Immunological dysfunction in chronic arsenic exposure: from subclinical condition to skin cancer. J Dermatol. 2018;45(11):1271–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Q, Li Y, Liu J, Wang D, Zheng Q, Sun G. Differences of urinary arsenic metabolites and methylation capacity between individuals with and without skin lesions in Inner Mongolia, Northern China. Int J Environ Res Public Health. 2014;11(7):7319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu J, Gao Y, Sun D, Wei Y. Serum folate and cobalamin levels and urinary dimethylarsinic acid in US children and adults. Environ Sci Pollut Res. 2018;25:17168–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Mr. Rhitwik Chatterjee, Geologist, Murshidabad district, West Bengal for hel** us in arranging the medical camps in remote villages of Murshidabad district and Dr. Sandip Bhattacharjee for medical supervision during biological sample collection.

Funding

PB was supported funding from University of Calcutta (Grant No. BI: 166/21). EML was supported by Canadian Institute of Health Research grant (MOP-272075). MB was supported by an Alberta Cancer Foundation Cancer Research Postdoctoral Fellowship Award. TS was supported by University Grants Commission—Senior Research Fellowship (India). None of the funding sources had any involvement in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

TS: Investigation, Data curation, Writing—review and editing, Visualization; SG: Investigation, Data curation, Writing—review and editing, Visualization; AKG: Methodology, Data curation; EML: Conceptualization, Funding acquisition, Project administration, Writing—review and editing; MB: Conceptualization, Funding acquisition, Formal analyses, Writing—original draft, Writing—review and editing, Visualization; PB: Conceptualization, Funding acquisition, Project administration, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Pritha Bhattacharjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participation

The study was approved by the ethical review committee of the University of Calcutta, India (CU/BIOETHICS/HUMAN/1391) as well as the University of Alberta human ethics review board (Protocol Number 69336). Informed and written consent to participation was obtained from the study participants matching the inclusion criteria.

Consent for publication

Informed consent to publication was obtained from the study subjects.

Additional information

Corresponding Editor: Somnath Paul; Reviewers: Nilanjana Banerjee, Jeison Garcia Serrano.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 350 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyal, T., Ghosh, S., Giri, A.K. et al. Association of ABCC4 G559T single nucleotide polymorphism with arsenic-induced precancerous hyperkeratosis. Nucleus (2023). https://doi.org/10.1007/s13237-023-00440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-023-00440-8

Keywords

Navigation