Log in

DNA markers in analysis of genetic diversity of Curcuma longa L. from Meghalaya

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

DNA markers viz. DAMD, ISJ and SRAP were used to characterize intra-specific genetic diversity of Curcuma longa (turmeric) collections from Meghalaya to evince levels of molecular variability and genetic diversity among the genotypes. Comparison of the degree of polymorphism and efficacy of the different molecular markers showed a high degree of polymorphism (> 93%) and high number of effective alleles (> 1.9) reflecting a relatively high genetic diversity among turmeric collections. UPGMA clustering pattern of DAMD, ISJ and SRAP revealed a mixed clustering pattern forming three major clusters. Overall, DNA-based markers used in the study were found to be efficient and highly informative. However, ISJ markers are more promising and can be considered as important tools for a better understanding of genetic relationships among the accessions and/or germplasm, and in selecting unique gene-pool for further biotechnological innovation and exploitation of C. longa germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–98.

    CAS  PubMed  Google Scholar 

  2. Al-Turki TA, Basahi MA. Assessment of ISSR based molecular genetic diversity of Hassawi rice in Saudi Arabia. Saudi J Biol Sci. 2015;22:591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amirmoradi B, Talebi R, Kamari E. Comparison of genetic variation and differentiation among annual Cicer species using start codon targeted (SCoT) polymorphism, DAMD-PCR, and ISSR markers. Plant Syst Evol. 2012;298:1679–88.

    Article  CAS  Google Scholar 

  4. Amiryousef A, Hyvonen J, Poczai P. iMEC: online marker efficiency calculator. Appl Plant Sci. 2018. https://doi.org/10.1002/aps3.1159.

    Article  Google Scholar 

  5. Amiteye S. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon. 2021;17(10):e08093. https://doi.org/10.1016/j.heliyon.2021.e08093.

    Article  CAS  Google Scholar 

  6. Anandaraj M, Prasath D, Kandiannan K, et al. Genotype by environment interaction effects on yield and curcumin in turmeric (Curcuma longa L.). Ind Crops Prod. 2014;53:358–64.

    Article  CAS  Google Scholar 

  7. Antunes LMG, Araújo MCP. Mutagenicidade e antimutagenicidade dos principais corantes para alimentos. Rev Nutr. 2000;13:81–8.

    Article  CAS  Google Scholar 

  8. Araujo CAC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Mem Inst Oswaldo Cruz. 2001;96:723–8.

    Article  CAS  PubMed  Google Scholar 

  9. Belaj A, Satovic Z, Cipriani G, et al. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and their effectiveness in establishing genetic relationships in olive. Theor Appl Genet. 2003;107:736–44.

    Article  CAS  PubMed  Google Scholar 

  10. Bhatt J, Kumar S, Patel S, et al. Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Ann Agrar Sci. 2017;15:434–8.

    Article  Google Scholar 

  11. Cecílio-Filho AB, Souza RJ, Braz LT, et al. Cúrcuma: planta medicinal, condimentar e de outros usos potenciais Cienc. Rural. 2000;30(1):171–5.

    Article  Google Scholar 

  12. Choudhury A, Deb S, Kharbyngar B, et al. Dissecting the plant genome: through new generation molecular markers. Genet Resour Crop Evol. 2022. https://doi.org/10.1007/s10722-022-01441-3.

    Article  Google Scholar 

  13. Dangi RS, Lagu MD, Choudhary LB, et al. Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol. 2004;4:13. https://doi.org/10.1186/1471-2229-4-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Das A, Kesari V, Satyanarayana VM, et al. Genetic relationship of Curcuma species from Northeast India using PCR based markers. Mol Biotechnol. 2011;49(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira CF, Alves E, Pestana KN, et al. Molecular characterization of cassava (Manihot esculenta Crantz) with yellow-orange roots for beta-carotene improvement. Crop Breed Appl Biotechnol. 2008;8:23–9.

    Article  CAS  Google Scholar 

  16. Fu LZ, Zhang HY, Wu XW, et al. Evaluation of genetic diversity in Lentinula edodes strains using RAPD, ISSR and SRAP markers. World J Microbiol Biotechnol. 2010;26:709–16.

    Article  CAS  Google Scholar 

  17. Goswami B, Rankawata R, Regie WD, et al. Genetic diversity, population structure and gene flow pattern among populations of Lasiurus sindicus Henr.—an endemic, C4 grass of Indian Thar desert. Plant Gene. 2020;21:100206. https://doi.org/10.1016/j.plgene.2019.100206.

    Article  Google Scholar 

  18. Han XY, Wang LS, Shu QY, et al. Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers. Biochem Genet. 2008;46:162–79.

    Article  CAS  PubMed  Google Scholar 

  19. Hangelbroek HH, Ouborg NJ, Santamaria L, et al. Clonal diversity and structure within a population of the pondweed Potamogeton pectinatus foraged by Bewick’s swans. Mol Ecol. 2002;11:2137–50.

    Article  CAS  PubMed  Google Scholar 

  20. Heath DD, Iwana GK, Delvin RH. PCR primed with VNTR core sequences yield species specific patterns and hypervariable probes. Nucleic Acids Res. 1993;21:5782–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu YP, Wang L, **e XL, et al. Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochem Syst Ecol. 2010;38:264–74.

    Article  CAS  Google Scholar 

  22. Jan UH, Rabbani MA, Shinwari ZK. Assessment of genetic diversity of indigenous turmeric (Curcuma longa L.) germplasm from Pakistan using RAPD markers. Med Plant Res. 2011;5(5):823–30.

    CAS  Google Scholar 

  23. Kang HW, Park DS, Go SJ, et al. Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol Cells. 2002;13(2):281–7.

    CAS  PubMed  Google Scholar 

  24. Kanjilala PB, Kotoky R, Singh RS. Morphological and chemical parameter of certain cultivars of chilli, ginger and turmeric grown in Meghalaya. Adv Plant Sci. 2002;15(1):225–9.

    Google Scholar 

  25. Karaca M, Ince AG. Minisatellites as DNA markers to classify bermudagrasses (Cynodon spp.): confirmation of minisatellite in amplified products. J Genet. 2008;87:83–6.

    Article  CAS  PubMed  Google Scholar 

  26. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to map** and gene tagging in Brassica. Theor Appl Genet. 2001;103:455–61.

    Article  CAS  Google Scholar 

  27. Li M, Zhoa Z, Miao X. Genetic diversity and relationships of apricot cultivars in North China revealed by ISSR and SRAP markers. Sci Hortic. 2014;173:20–8.

    Article  Google Scholar 

  28. Ma M, Wang T, Lu B. Assessment of genetic diversity in Amomum tsao-ko Crevost & Lemarié, an important medicine food homologous crop from Southwest China using SRAP and ISSR markers. Genet Resour Crop Evol. 2021;68:2655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Megh Self Help. SHG Federation to cultivate Lakadong Turmeric. Quarterly Newsletter on SHG movement in Meghalaya, vol 1, no 3. 2006. p. 2. https://www.meghalaya.gov.in/sites/default/files/documents/Megh_SHG_III_2009.pdf. Retrieved 10th Feb 2022.

  30. MOFPI (Ministry of Food Processing Industries). PM Formalisation of Micro food processing Enterprises Scheme, Newsletter. 2019. https://www.mofpi.gov.in/pmfme/enewsaugust9/markettrends1.html. Retrieved 28th Feb 2022.

  31. Naik D, Singh D, Vartak V, et al. Assessment of morphological and genetic diversity in Gmelina arborea Roxb. New For. 2009. https://doi.org/10.1007/s11056-009-9134-y.

    Article  Google Scholar 

  32. Patel DA, Zander M, Dalton-Morgan J, et al. Advances in plant genoty**: where the future will take us. In: Batley J, editor., et al., Plant genoty**. Berlin: Springer; 2015. p. 1–11.

    Google Scholar 

  33. Perrier X, Jacquemoud-Collet JP. DARwin software. http://darwin.cirad.fr/. 2006. Accessed 1 Feb 2016.

  34. Poczai P, Varga I, Laos M, et al. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013;9:6. https://doi.org/10.1186/1746-4811-9-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2:225–38.

    Article  CAS  Google Scholar 

  36. Robarts DWH, Wolfe AD. Sequence-Related Amplified Polymorphism (SRAP) markers: a potential resource for studies in plant molecular biology. Appl Plant Sci. 2014;2(7):1–13.

    Article  Google Scholar 

  37. Roy S, Verma SK, Hore DK, et al. Agro-morphological diversity in turmeric (Curcuma longa) accessions collected from north-eastern India. Indian J Agric Sci. 2011;81(10):898–902.

    Google Scholar 

  38. Sahoo A, Jena S, Kar B, et al. EST-SSR marker revealed effective over biochemical and morphological scepticism towards identification of specific turmeric (Curcuma longa L.) cultivars. 3 Biotech. 2017;7(1):84. https://doi.org/10.1007/s13205-017-0701-1.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sarwat M, Das S, Srivastava PS. Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Rep. 2008;27:519–28.

    Article  CAS  PubMed  Google Scholar 

  40. Sasikumar B. Genetic resources of Curcuma, diversity, characterization and utilization. Plant Genet Resour. 2005;3(2):230–51.

    Article  CAS  Google Scholar 

  41. Sawicki J, Szczecińska M. A comparison of PCR-based markers for molecular identification of Sphagnum species of the section Acutifolia. Acta Soc Bot Pol. 2011;80(3):185–92.

    Article  CAS  Google Scholar 

  42. Shao JW, Chen WL, Peng YQ, et al. Genetic diversity within and among populations of the endangered and endemic species Primula merrilliana in China. Biochem Syst Ecol. 2009;37:699–706.

    Article  CAS  Google Scholar 

  43. Sigrist MS, Pinheiro JB, Azevedo-Filho JA, et al. Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers. Genet Mol Res. 2011;10(1):419–28.

    Article  CAS  PubMed  Google Scholar 

  44. Singh N, Bajpai R, Mahar KS, et al. ISSR and DAMD markers revealed high genetic variability within Flavoparmelia caperata in Western Himalaya (India). Physiol Mol Biol Plants. 2014;20(4):501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh S, Panda MK, Nayak S. Evaluation of genetic diversity in turmeric (Curcuma longa) using RAPD and ISSR markers. Ind Crops Prod. 2012;37:284–91.

    Article  CAS  Google Scholar 

  46. Syamkumar S, Lowarence B, Sasikumar B. Isolation and amplification of DNA from rhizomes of turmeric and ginger. Plant Mol Biol Rep. 2003;21(2):171a–171e.

    Article  Google Scholar 

  47. Tautz D, Schlötterer C. Simple sequences. Curr Opin Genet Dev. 1994;4:834–7.

    Article  Google Scholar 

  48. Uzun A, Yesiloglu T, Aka-Kacar Y, et al. Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hortic. 2009;121:306–12.

    Article  CAS  Google Scholar 

  49. Velayudhan KC, Dikshit N, Abdul Nizar M. Ethnobotany of turmeric (Curcuma longa L.). Indian J Tradit Knowl. 2009;11(4):607–14.

    Google Scholar 

  50. Verma S, Singh S, Sharma S, et al. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers. Physiol Mol Biol Plants. 2015;21(2):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warlarphih D, Suchiang W, Susngi AM, et al. Genetic diversity and species relationship of Hedychium J. Köenig as revealed by DAMD and ISJ markers. Nucleus. 2022. https://doi.org/10.1007/s13237-022-00401-7.

    Article  Google Scholar 

  52. Weining S, Langridge P. Identification and map** of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet. 1991;82(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  53. Wuthi-udomlert M, Grisanapan W, Luanratana O, et al. Antifungal activity of Curcuma longa grown in Thailand. Southeast Asian J Trop Med Public Health. 2000;1:178–82.

    Google Scholar 

  54. Yeh FC, Young RC, Boyle T. Popgene version 1.32: population genetic analysis. 1999. https://sites.ualberta.ca/~fyeh/popgene_download.html. Accessed 17 May 2020.

  55. Zhou Z, Bebeli PJ, Somers DJ, Gustafson JP. Direct amplification of minisatellite-region DNA with VNTR core sequences in the genus Oryza. Theor Appl Genet. 1997;95:942–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of the Department for providing necessary facilities. The authors are also grateful to the Department of Biotechnology, Government of India for financial assistance (Ref. No. DBTJRF/2010-11/582 dated 27th January, 2011). Sincere thanks are also due to the members of Plant Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong for their constant help and encouragement.

Funding

Department of Biotechnology, Government of India (Ref. No. DBTJRF/2010-11/582 dated 27th January, 2011).

Author information

Authors and Affiliations

Authors

Contributions

SRR conceived and supervised the study; JML collected samples and performed experimental and data analysis, both the authors wrote and finalized the manuscript.

Corresponding author

Correspondence to Judith Mary Lamo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Informed consent

All authors have read the manuscript and consented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Umesh C. Lavania; Reviewers: Sadanandam Abbagani, Amita Pal, Tripta Jhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamo, J.M., Rao, S.R. DNA markers in analysis of genetic diversity of Curcuma longa L. from Meghalaya. Nucleus 66, 127–136 (2023). https://doi.org/10.1007/s13237-023-00424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-023-00424-8

Keywords

Navigation