Log in

PVA Hydrogel Functionalization via PET-RAFT Grafting with Glycidyl Methacrylate and Immobilization with 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan via Ring-Open Reaction

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To solve the biofouling problem of polyvinyl alcohol (PVA) hydrogel as the artificial cornea, glycidyl methacrylate (GMA) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were grafted on the surface of PVA hydrogel via a new method of photoinduced electron transfer—reversible addition fragmentation chain transfer (PET-RAFT) polymerization and ring-open reaction. Both attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) confirmed that GMA and HACC were successfully grafted on the surface of PVA hydrogel. A series of experiments to test the hydrophilicity of PVA hydrogel showed that it became hydrophobic due to the introduction of hydrophobic groups after grafting with GMA and HACC. In addition, cytotoxicity in vitro of PVA-g-p(GMA-HACC) hydrogel could be considered as not cytotoxicity according to ISO 10993-5: 2009. The anti-fouling property of hydrogel decreased after grafting with GMA due to the hydrophobic surface, while increased after grafting with HACC due to the steric repulsion of p(GMA-HACC) polymer brush. It’s no doubt that PET-RAFT was a feasible and reliable surface modification method which could be used in many biomolecules due to the excellent advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Li, X. Cai, D. Wang, S. Chen, J. Yuan, L. Li, and J. Shen, Colloids Surf. B, 110, 327 (2013).

    CAS  Google Scholar 

  2. B. Ozcelik, K. K. K. Ho, V. Glattauer, M. Willcox, N. Kumar, and H. Thissen, ACS Biomater. Sci. Eng., 3, 78 (2016).

    Google Scholar 

  3. B. Singh and L. Pal, J. Mech. Behav. Biomed. Mater., 9, 9 (2012).

    CAS  PubMed  Google Scholar 

  4. S. Vijayasekaran, J. H. Fitton, C. R. Hicks, T. V. Chirila, G. J. Crawford, and I. J. Constable, Biomaterials, 19, 2255 (1998).

    CAS  PubMed  Google Scholar 

  5. Z. Q. Gu, J. M. **ao, and X. H. Zhang, Bio-Med. Mater. Eng., 8, 75 (1998).

    CAS  Google Scholar 

  6. S. Horiike and S. Matsuzawa, J. Appl. Polym. Sci., 58, 1335 (2010).

    Google Scholar 

  7. J. Wang, C. Gao, Y. Zhang, and Y. Wan, Mater. Sci. Eng. C, 30, 214 (2010).

    Google Scholar 

  8. H. Jiang, Y. Zuo, L. Zhang, J. Li, A. Zhang, Y. Li, and X. Yang, J. Mater. Sci. Mater. Med., 25, 941 (2014).

    CAS  PubMed  Google Scholar 

  9. Y. Hara, T. Matsuura, F. Taketani, M. Tsukamoto, Y. Nawa, M. Saishin, R. Kodama, and A. Yamauchi, Nippon Ganka Gakkai Zasshi, 102, 247 (1998).

    CAS  PubMed  Google Scholar 

  10. K. Liu, L. I. Yubao, X. U. Fenglan, Y. I. Zuo, L. I. Zhang, H. Wang, and J. Liao, Mater. Sci. Eng. C, 29, 261 (2009).

    Google Scholar 

  11. A. W. Eckert, D. Gröbeb, and U. Rothe, Biomaterials, 21, 441 (2000).

    CAS  PubMed  Google Scholar 

  12. C. Tyagi, L. K. Tomar, and H. Singh, J. Appl. Polym. Sci., 111, 1381 (2010).

    Google Scholar 

  13. G. Bayramoğlu, S. Akgöl, A. Bulut, A. Denizli, and M. Y. Arıca, Biochem. Eng. J., 14, 117 (2003).

    Google Scholar 

  14. A. Boujemaoui, S. Mazières, E. Malmström, M. Destarac, and A. Carlmark, Polymer, 99, S0032386116305687 (2016).

    Google Scholar 

  15. H. Kitanoa, K. I. Tokuwa, L. Li, S. Iwanaga, M. Nakamura, N. Kanayama, K. Ohno, and Y. Saruwatari, Eur. Polym. J., 48, 1875 (2012).

    Google Scholar 

  16. M. B. And and W. J. Brittain, Macromolecules, 35, 610 (2002).

    Google Scholar 

  17. X. Jiangtao, J. Kenward, A. Amir, S. Sivaprakash, and B. Cyrille, J. Am. Chem. Soc., 136, 5508 (2014).

    Google Scholar 

  18. J. Xu, K. Jung, and C. Boyer, Macromolecules, 47, 4217 (2014).

    CAS  Google Scholar 

  19. J. Meng, J. Li, Y. Zhang, and S. Ma, J. Membr. Sci., 455, 405 (2014).

    CAS  Google Scholar 

  20. J. Xu, Polym. Chem., 6, 5615 (2015).

    CAS  Google Scholar 

  21. N. Corrigan, J. Xu, and C. Boyer, Macromolecules, 49, 3274 (2016).

    CAS  Google Scholar 

  22. S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, and V. Balzani, in Photochemistry and Photophysics of Coordination Compounds I, Springer-Verlag, Berlin Heidelberg, 2007, pp 117–214.

    Google Scholar 

  23. J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 40, 102 (2010).

    PubMed  Google Scholar 

  24. P. Zhou, Y. **a, L. Jiang, Y. Zhang, C. Qiu, X. Yang, and S. Xu, RSC Adv., 6, 66938 (2016).

    CAS  Google Scholar 

  25. H. Wang, Y. Chen, K. Qian, Q. Guo, W. Shu, C. **, S. Wei, and Y. Wang, J. Macromol. Sci. A, 54, 1 (2017).

    CAS  Google Scholar 

  26. A. Chang, Iran. Polym. J., 24, 161 (2015).

    CAS  Google Scholar 

  27. X. U. **aofen, W. Ling, S. Guo, L. Lei, and T. Tang, Appl. Surf. Sci., 257, 10520 (2011).

    Google Scholar 

  28. Z. X. Peng, L. Wang, L. Du, S. R. Guo, X. Q. Wang, and T. T. Tang, Carbohydr. Polym., 81, 275 (2010).

    CAS  Google Scholar 

  29. L. Hui, D. Yumin, W. **, Int. J. Food Microbiol., 95, 147 (2004).

    Google Scholar 

  30. P. Zhou, X. Yan, W. **g, L. Chong, Y. Long, T. Wei, G. Shen, and S. Xu, J. Mater. Chem. B, 1, 685 (2013).

    CAS  Google Scholar 

  31. S. H. Hyon, W. I. Cha, and Y. Ikada, Polym. Bull., 22, 119 (1989).

    CAS  Google Scholar 

  32. Y. Heo, H. Im, S. Yun, and J. Kim, Macromol. Res., 20, 1271 (2012).

    CAS  Google Scholar 

  33. M. A. Ruyin, D. **ong, M. Feng, J. Zhang, and Y. Peng, Mater. Sci. Eng. C, 29, 1979 (2009).

    Google Scholar 

  34. M. C. Li, J. K. Lee, and U. R. Cho, J. Appl. Polym. Sci., 125, 405 (2012).

    CAS  Google Scholar 

  35. L. Zhang, J. Zheng, Y. Rong, C. Yang, L. Long, Y. Xu, Y. Chen, J. Wang, and Q. Yao, Med. Chem. Res., 27, 2231 (2018).

    CAS  Google Scholar 

  36. S. H. Noh, E. H. Kim, G. D. Han, J. W. Kim, Y. Ito, J. G. Lee, and T. I. Son, Macromol. Res., 25, 1192 (2017).

    CAS  Google Scholar 

  37. Z. Xu, J. Liao, H. Tang, and N. Li, J. Membr. Sci., 548, 481 (2017).

    Google Scholar 

  38. S.-A. Riyajan and Y. Sasithornsonti, J. Polym. Environ., 21, 472 (2012).

    Google Scholar 

  39. R. Huang, G. Chen, M. Sun, Y. Hu, and C. Gao, J. Membr. Sci., 286, 237 (2006).

    CAS  Google Scholar 

  40. L. Wei, X. Ling, and C. Qin, J. Mater. Sci., 45, 5915 (2010).

    Google Scholar 

  41. X. Xu, Y. Li, F. Wang, L. Lv, J. Liu, M. Li, A. Guo, J. Jiang, Y. Shen, and S. Guo, Int. J. Pharm., 453, 610 (2013).

    CAS  PubMed  Google Scholar 

  42. M. Varga, T. Izak, V. Vretenar, H. Kozak, J. Holovsky, A. Artemenko, M. Hulman, V. Skakalova, S. L. Dong, and A. Kromka, Carbon, 111, 54 (2017).

    CAS  Google Scholar 

  43. M. K. Ashtiani, M. Zandi, P. Shokrollahi, M. Ehsani, and H. Baharvand, Polym. Adv. Technol., 29, 1227 (2018).

    Google Scholar 

  44. X. Pan, K. Zhu, G. Ren, N. Islam, J. Warzywoda, and Z. Fan, J. Mater. Chem. A, 2, 12746 (2014).

    CAS  Google Scholar 

  45. D. W. Zeng and C. K. Yung, Appl. Surf. Sci., 180, 280 (2001).

    CAS  Google Scholar 

  46. M. Outirite, M. Lagrenée, M. Lebrini, M. Traisnel, C. Jama, H. Vezin, and F. Bentiss, Electrochim. Acta, 55, 1670 (2010).

    CAS  Google Scholar 

  47. G. Beshkov, D. B. Dimitrov, S. Georgiev, D. Juan-Cheng, P. Petrov, N. Velchev, and V. Krastev, Diamond Relat. Mater., 8, 591 (1999).

    CAS  Google Scholar 

  48. Y. N. Singhbabu, P. Kumari, S. Parida, and R. K. Sahu, Carbon, 74, 32 (2014).

    CAS  Google Scholar 

  49. J. Zhang, Y. Li, F. Zhang, C. Hu, and Y. Chen, Angew. Chem. Int. Ed., 55, 1872 (2016).

    CAS  Google Scholar 

  50. K. Jia and Y. Chen, Chem. Commun., 54, 6105 (2018).

    CAS  Google Scholar 

  51. J. Phommalysacklovan, Y. Chu, C. Boyer, and J. Xu, Chem. Commun., 54, 6591 (2018).

    CAS  Google Scholar 

  52. C. K. Prier, D. A. Rankic, and D. W. C. Macmillan, Chem. Rev., 113, 5322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Liu, and S. Perrier, Chem. Rev., 109, 5402 (2009).

    CAS  PubMed  Google Scholar 

  54. S. Perrier, C. Barner-kowollik, J. F. Quinn, P. Vana, and T. P. Davis, Macromolecules, 35, 8300 (2002).

    CAS  Google Scholar 

  55. D. J. Enscore, H. B. Hopfenberg, and V. T. Stannett, Polymer, 18, 793 (1977).

    CAS  Google Scholar 

  56. Q. Tang, X. Sun, Q. Li, J. Lin, and J. Wu, J. Mater. Sci., 44, 3712 (2009).

    CAS  Google Scholar 

  57. G. Liu and J. Song, Polym. Int., 61, 596 (2012).

    CAS  Google Scholar 

  58. Z. L. Liu, H. Hu, and R. X. Zhuo, J. Polym. Sci. Part A: Polym. Chem., 42, 4370 (2004).

    CAS  Google Scholar 

  59. Geneva, Switzerland, International Organization for Standardization, 2009.

  60. S. Lamponi, G. Leone, Consumi, G. Greco, and A. Magnani, J. Biomater. Sci. Polym. Ed., 23, 555 (2012).

    CAS  PubMed  Google Scholar 

  61. S. Höhn, S. Virtanen, and A. R. Boccaccini, Appl. Surf. Sci., 464, 212 (2018).

    Google Scholar 

  62. S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, J. Colloid Interface Sci., 142, 149 (1991).

    CAS  Google Scholar 

  63. S. I. Jeon and J. D. Andrade, J. Colloid Interface Sci., 142, 159 (1991).

    CAS  Google Scholar 

  64. Y. He, J. Hower, S. Chen, M. T. Bernards, Y. Chang, and S. Jiang, Langmuir, 24, 10358 (2008).

    CAS  PubMed  Google Scholar 

  65. S. Chen, L. Li, Z. Chao, and Z. Jie, Polymer, 51, 5283 (2010).

    CAS  Google Scholar 

  66. J. Yuan, J. Zhang, X. Zang, J. Shen, and S. Lin, Colloids Surf. B, 30, 147 (2003).

    CAS  Google Scholar 

  67. H. M. Zhu, L. Bo, L. Li, and S. Jian, Sci. China, Ser. B: Chem., 51, 78 (2008).

    CAS  Google Scholar 

  68. Y. Tamada and Y. Ikada, J. Colloid Interface Sci., 155, 334 (1993).

    CAS  Google Scholar 

  69. Y. Tamada and Y. Ikada, Polymer, 34, 2208 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **sheng Zhou or Zhongkuan Luo.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work supported by the Shenzhen strategic emerging industry development funds financed Project (NYSW 201603241024196800), the natural science foundation of Guangdong province, China (2018A030310610) and Sanming project medicine in Shenzhen (SZSM201512039).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Lin, Y., Ye, L. et al. PVA Hydrogel Functionalization via PET-RAFT Grafting with Glycidyl Methacrylate and Immobilization with 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan via Ring-Open Reaction. Macromol. Res. 27, 1144–1154 (2019). https://doi.org/10.1007/s13233-019-7152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7152-y

Keywords

Navigation