Log in

Preparation and properties of poly(vinyl alcohol)/vinyltrimethoxysilane (PVA/VTMS) hybrid films with enhanced thermal stability and oxygen barrier properties

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To enhance the thermal stability and barrier properties of pure poly(vinyl alcohol) (PVA), a series of poly(vinyl alcohol)/vinyltrimethoxysilane (PVA/VTMS) hybrid films were prepared via a sol-gel process, and their physical properties were investigated as a function of VTMS content. During the sol-gel process, simultaneous reactions between hydroxyl groups of PVA and silanol groups of hydrolyzed VTMS and self-condensation of VTMS occurred, inducing a cross-linked network structure and greatly enhanced thermal stability and oxygen barrier properties. The glass transition temperature and thermal decomposition temperature (T 5%) of the PVA/VTMS hybrid films increased from 72.6 to 84.3 °C and 273.6 to 342.2 °C, respectively, with increasing VTMS content from 0 to 20%. Oxygen transmission rates of the hybrid films decreased from 6.12 to 0.17 cm3/m2×day, and those of the hybrid films incorporating 5%, 10%, and 20% VTMS were suppressed by 65.7%, 95.6%, and 97.2%, respectively, versus a pure PVA film. These are dependent on the chemical structure and morphology of the films with differing initial amounts of VTMS. The chemical affinity for water, intermolecular packing, and rigidity in polymer chains increased with increasing cross-linking by VTMS, leading to enhanced oxygen barrier properties and thermal stability in the PVA/VTMS hybrid films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, X. Wang, C. Xu, M. Zhang, and X. Shang, Polym. Int., 60, 816 (2011).

    Article  CAS  Google Scholar 

  2. J. Yeun, G. Bang, B. Park, S. Ham, and J. Chang, J. Appl. Polym. Sci., 101, 591 (2006).

    Article  CAS  Google Scholar 

  3. J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Therias, and J. L. Gardette, Sol. Enerergy Mater. Sol. Cells, 99, 240 (2012).

    Article  CAS  Google Scholar 

  4. T. Uragami, K. Okazaki, H. Matsugi, and T. Miyata, Macromolecules 35, 9156 (2002).

    Article  CAS  Google Scholar 

  5. W. H. Hu, Z. H. Zhan, Q. G. Zhang, Q. L. Liu, and A. M. Zhu, J. Appl. Polym. Sci., 126, 778 (2012).

    Article  CAS  Google Scholar 

  6. A. Bandyopadhyay, M. Sarkar, and A. K. Bhowmick, J. Mater. Sci., 40, 5233 (2005).

    Article  CAS  Google Scholar 

  7. Q. G. Zhang, Q. L. Liu, A. M. Zhu, Y. **ong, and X. H. Zhang, J. Phys. Chem. B, 112, 16559 (2008).

    Article  CAS  Google Scholar 

  8. S. W. Kim, Korean J. Chem. Eng., 25, 1195 (2008).

    Article  CAS  Google Scholar 

  9. Q. G. Zhang, Q. L. Liu, Q. G. Zhang, Q. L. Liu, X. J. Meng, and I. Broadwell, J. Appl. Polym. Sci., 118, 1121 (2010).

    CAS  Google Scholar 

  10. H. Kwon, D. Kim, J. Seo, and H. Han, Macromol. Res., 21, 987 (2013).

    Article  CAS  Google Scholar 

  11. D. Kim, M. Jang, J. Seo, K. Nam, H. Han, and S. B. Khan, Compos. Sci. Technol., 75, 84 (2013).

    Article  CAS  Google Scholar 

  12. M. Lim, D. Kim, J. Seo, H. Han, and S. B. Khan, Polym. Compos., DOI:10.1002/pc.22984 (2014).

    Google Scholar 

  13. K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000).

    Article  CAS  Google Scholar 

  14. G. Zhu, F. Wang, S. Dong, K. Xu and Y. Liu, Polym. Plast. Technol. Eng., 52, 422 (2013).

    Article  CAS  Google Scholar 

  15. S. T. Palakattukunnel, S. Thomas, P. A. Sreekumar, and S. Bandyopadhyay, J. Polym. Res., 18, 1277 (2011).

    Article  CAS  Google Scholar 

  16. Y. Chen and J. O. Iroh, Chem. Mater., 11, 1218 (1999).

    Article  CAS  Google Scholar 

  17. Q. G. Zhang, Q. L. Liu, Z. Y. Jiang, and Y. Chen, J. Membr. Sci., 287, 237 (2007).

    Article  CAS  Google Scholar 

  18. D. Kim, Y. Lee, J. Seo, H. Han, and S. B. Khan, Polym. Int., 62, 257 (2013).

    Article  CAS  Google Scholar 

  19. V. Krishnakumar, G. Shanmugam, and R. Nagalakshimi, J. Phys. D: Appl. Phys., 45, 1 (2012).

    Article  Google Scholar 

  20. F. Dong, W. Guo, S. S. Park, and C. S. Ha, J. Mater. Chem., 21, 10744 (2011).

    Article  CAS  Google Scholar 

  21. S. E. M. Selke, J. D. Culter, and R. J. Hernandez, Plastics Packaging; Properties, Processing, Applications and Regulations, 2nd ed., Hanser Publishers, Munich, 2004.

    Google Scholar 

  22. S. K. Bajpai, N. Chand, and V. Chaurasia, J. Appl. Polym. Sci., 115, 674 (2010).

    Article  CAS  Google Scholar 

  23. P. W. Labuschagne, W. A. Germishuizen, S. M. C. Verryn, and F. S. Moolman, Eur. Polym. J., 44, 2146 (2008).

    Article  CAS  Google Scholar 

  24. Q. G. Zhang, Q. L. Liu, F. F. Shi, and Y. **ong, J. Mater. Chem., 18, 4646 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongchul Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, M., Kim, D., Seo, J. et al. Preparation and properties of poly(vinyl alcohol)/vinyltrimethoxysilane (PVA/VTMS) hybrid films with enhanced thermal stability and oxygen barrier properties. Macromol. Res. 22, 1096–1103 (2014). https://doi.org/10.1007/s13233-014-2146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2146-2

Keywords

Navigation