Log in

Fractal generation via generalized Fibonacci–Mann iteration with s-convexity

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

Recently, the generalized Fibonacci–Mann iteration scheme has been defined and used to develop an escape criterion to study mutants of the classical fractals for a function \(\sin \left( z^{n}\right) +az+c\), \(a,c\in \mathbb {C}\), \(n\ge 2\), and z is a complex variable. In the current work, we use generalized Fibonacci–Mann iteration extended further via the notion of s-convex combination in the exploration of new mutants of celebrated Mandelbrot and Julia sets. Further, we provide a few graphical and numerical examples obtained by the use of the derived criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Alfuraidan, M. R. and Khamsi, M. A. Fibonacci-Mann iteration for monotone asymptotically nonexpansive map**s, Bull. Aust. Math. Soc., 96 (2) (2017), 307–316.

    Article  MathSciNet  Google Scholar 

  2. Antal, S., Tomar, A., Prajapati, D. J., Sajid, M., Fractals as Julia sets of complex sine function via fixed point iterations, Fractal Fract. 2021, 5, 272. https://doi.org/10.3390/fractalfract5040272

    Article  Google Scholar 

  3. Antal, S., Tomar, A., Prajapati, D.J., Sajid, M., Variants of Julia and Mandelbrot sets as fractals via Jungck-Ishikawa fixed point iteration system with\( s \)-convexity, AIMS Mathematics, 7 (6) (2022), 10939–10957. https://doi.org/10.3934/math.2022611

  4. Benjamin, A. T., Quinn, J. J., The Fibonacci numbers-exposed more discretely, Math. magazine, 76 (3) (2003), 182-192.

    MathSciNet  Google Scholar 

  5. Julia, G., Mémoire sur l’itération des fonctions rationnelles, J. Math. Pures Appl., 8 (1918), 47–745.

    Google Scholar 

  6. Barnsley, M., Fractals everywhere, 2nd ed.; Academic Press: San Diego, CA, USA, 1993.

    Google Scholar 

  7. Mandelbrot, B. B., The fractal geometry of nature, W. H. Freeman, New York, NY, USA, 1982.

    Google Scholar 

  8. Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.

    Article  MathSciNet  Google Scholar 

  9. Devaney, R. L., A first course in chaotic dynamical systems: Theory and Experiment, 2nd ed., Addison-Wesley: Boston, MA, USA, 1992.

    Google Scholar 

  10. Barrallo, J. and Jones, D. M., Coloring algorithms for dynamical systems in the complex plane, in visual mathematics, 1 (4), MISASA, Belgrade, Serbia, 1999.

    Google Scholar 

  11. Gdawiec, K., and Shahid, A. A., Fixed point results for the complex fractal generation in the S-iteration orbit with\( s \)-convexity, Open J. Math. Sci. 2 (1) (2018), 56-72.

    Article  Google Scholar 

  12. Jia, F., Zhang, Y., Application of generalized Julia set graphics in clothing pattern design, Text. Res. J., 36 (7) (2015), 104–109.

    ADS  Google Scholar 

  13. Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag. 76 (3) (2003), 167–181.

    MathSciNet  Google Scholar 

  14. Kang, S. M., Nazeer, W., Tanveer, M. and Shahid, A. A., New fixed point results for fractals generation in Jungck-Noor orbit with\( s \)-convexity, J. Funct. Spaces, 2015, Artical ID: 963016, 1–7.

  15. Kumari, S., Gdawiec, K., Nandal, A., Kumar, N., Chugh, R., On the Viscosity Approximation Type Iterative Method and Its Non-linear Behaviour in the Generation of Mandelbrot and Julia Sets, Numerical Algorithms (in press), https://doi.org/10.1007/s11075-023-01644-4

  16. Kumari, S., Gdawiec, K., Nandal, A., Postolache, M., Chugh, R., A Novel Approach to Generate Mandelbrot Sets, Julia Sets and Biomorphs via Viscosity Approximation Method, Chaos, Solitons & Fractals 163, 112540, (2022)

    Article  MathSciNet  Google Scholar 

  17. Kumari, S., Kumari, M., and Chugh, R., Generation of new fractals via SP orbit with\( s \)-convexity, Int. J. Eng. Technol, 9 (3), 2491–2504.

  18. Kwun, Y.C., Tanveer, M., Nazeer, W., Gdawiec, K. and Kang, S.M., Mandelbrot and Julia sets via Jungck-CR iteration with\(s\)-convexity, IEEE Access 7 (2019), 12167-12176.

    Article  Google Scholar 

  19. Kwun, Y. C., Shahid, A. A., Nazeer, W., Abbas, M. and Kang, S. M., Fractal generation via\( CR \)-iteration scheme with\( s \)-convexity, IEEE Access 7 (2019), 69986-69997.

  20. Li, D., Tanveer, M., Nazeer, W., Guo, X., Boundaries of filled julia sets in generalized Jungck-Mann orbit, IEEE Access, 7 (2019), 76859-76867.

    Article  Google Scholar 

  21. Ma, Y., Li, S.B., The application of Julia set in the design of textile pattern, Microcomputer Applications, 27 (6) (2006), 739-742.

    CAS  Google Scholar 

  22. Nazeer, W., Kang, S.M., Tanveer, M., Shahid A.A., Fixed point results in the generation of Julia and Mandelbrot sets, J. Ineq. Appl., (1) (2015), 1–16.

  23. Özgür, N., Antal, S., Tomar, A., Julia and Mandelbrot sets of transcendental function via Fibonacci-Mann iteration, J. Funct. Spaces, (2022), Article ID 2592573, 13 pages. https://doi.org/10.1155/2022/2592573

  24. Picard, E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures et Appl., 6 (1890), 145210.

    Google Scholar 

  25. Pinheiro, M. R., \(s\)-convexity: foundations for analysis, Differ. Geom. Dyn. Syst. 10 (2008), 257–262.

    MathSciNet  Google Scholar 

  26. Shahid, A. A., Nazeer, W., Gdawiec, K., The Picard-Mann iteration with\(s\)-convexity in the generation of Mandelbrot and Julia sets, Monatsh. Math. 195 (4) (2021), 565–584.

    Article  MathSciNet  Google Scholar 

  27. Tomar, A., Prajapati, D. J., Antal, S., Rawat, S., Variants of Mandelbrot and Julia fractals for higher-order complex polynomials, Math. Meth. Appl. Sci. (2022), 1-13. https://doi.org/10.1002/mma.8262

  28. Tomar, A., Antal, S., Özgür, N. and Kumar, V., A generalized version of Fibonacci-Mann Iteration scheme in fractal generating process, preprint.

  29. Zhang, H., Tanveer, M., Li, Y. X., Peng, Q., and Shah, N. A., Fixed point results of an implicit iterative scheme for fractal generations, AIMS Math., 6 (12) (2021), 13170-13186.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his precise remarks and suggestions which led to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Antal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by S.G. Dani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antal, S., Özgür, N., Tomar, A. et al. Fractal generation via generalized Fibonacci–Mann iteration with s-convexity. Indian J Pure Appl Math (2024). https://doi.org/10.1007/s13226-024-00537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13226-024-00537-z

Keywords

Navigation