Log in

On generalization for Tribonacci Trigintaduonions

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The trigintaduonions form a 32-dimensional Cayley–Dickson algebra. In this paper, we intend to make a new approach to introduce the concept of generalized Tribonacci trigintaduonions instead of and study some properties of this trigintaduonions like Binet’s formula, generating function, summation formula, norm value and matrix formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alotaibi, M. Mursaleen, B. AS. Alamri and S. A. Mohiuddine, Compact operators on some Fibonacci difference sequence spaces, J. Ineq. Appl., 2015 (2015):203.

  2. M. Basu and M. Das, Tribonacci Matrices and a New Coding Theory, Discrete Math. Algorithms Appl., 6 (2014), 1450008.

    Article  MathSciNet  Google Scholar 

  3. G. Bilgici, Ü. Tokeşer and Z. Ünal, Fibonacci and Lucas Sedenions, J. Integer Seq., 20 (2017), 1–11.

    MathSciNet  MATH  Google Scholar 

  4. I. Bruce, A modified Tribonacci sequence, Fibonacci Quart., 22 (1984), 244–246.

    MathSciNet  MATH  Google Scholar 

  5. A. Cariow and G. Cariowa, An algorithm for multiplication of trigintaduonions, J. Theor. Appl. Comput. Sci., 8 (2014), 50–75.

    MATH  Google Scholar 

  6. R. E. Cawagas, A. S. Carrascal, L. A. Bautista, J. P. Sta. Maria, J. D. Urrutia and B. Nobles, The subalgebra structure of the Cayley–Dickson algebra of dimension 32 (Trigintaduonions), ar**v:0907.2047v3 (2009).

  7. J. L. Cereceda, Binet’s formula for generalized Tribonacci numbers, Int. J. Math. Educ. Sci. Tech., 46 (2015), 1235–1243.

    Article  MathSciNet  Google Scholar 

  8. E. Choi, Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math, 20 (2013), 207–221.

    MathSciNet  MATH  Google Scholar 

  9. M. Elia, Derived sequences, the Tribonacci recurrence and cubic forms, Fibonacci Quart., 39 (2001), 107–115.

    MathSciNet  MATH  Google Scholar 

  10. K. Gül, On k-Fibonacci and k-Lucas Trigintaduonions, Int. J. Contemp. Math. Sci., 13 (2018), 1–10.

    Article  Google Scholar 

  11. F. T. Howard and F. Saidak, Zhou’s theory of constructing identities, Congress Numer, 200 (2010), 225–237.

    MathSciNet  MATH  Google Scholar 

  12. O. Keçilioǧlu and I. Akkus, The Fibonacci Octonions, Adv. Appl. Clifford Algebras, 25 (2015), 151–158.

    Article  MathSciNet  Google Scholar 

  13. C. Kizilateş, P. Catarino and N. Tuğlu, On the Bicomplex Generalized Tribonacci Quarternions, Mathematics, 7 (2019), p. 80.

    Article  Google Scholar 

  14. P. Y. Lin, De Moivre-type identities for the Tribonacci numbers, Fibonacci Quart., 26 (1988), 131–134.

    MathSciNet  MATH  Google Scholar 

  15. G. Cerda-Morales, On a Generalization for Tribonacci Quaternions, Mediterr. J. Math., 14 (2017), 239.

    Article  MathSciNet  Google Scholar 

  16. K. Raj, S. Pandoh and S. Jamwal, Fibonacci difference sequence spaces for modulus functions, Matematiche (Catania), 70 (2015), 137–156.

    MathSciNet  MATH  Google Scholar 

  17. A. Scott, T. Delaney and V. Jr. Hoggatt, The Tribonacci sequence, Fibonacci Quart., 15 (1977), 193–200.

    MATH  Google Scholar 

  18. A. G. Shannon and A. F. Horadam, Some properties of third-order Recurrence relations, Fibonacci Quart., 10 (1972), 135–146.

    MathSciNet  MATH  Google Scholar 

  19. Y. Soykan, Tribonacci and Tribonacci–Lucas Sedenions, Mathematics, 7 (2019), 74.

    Article  MathSciNet  Google Scholar 

  20. C. C. Yalavigi, A Note on ‘Another Generalized Fibonacci Sequence’, Math. Student, 39 (1971), 407–408.

    MathSciNet  MATH  Google Scholar 

  21. O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput., 217 (2011), 5603–5611.

    MathSciNet  MATH  Google Scholar 

  22. N. Yilmaz and N. Taskara, Tribonacci and Tribonacci–Lucas numbers via the determinants of special matrices, Appl. Math. Sci., 8 (2014), 1947–1955.

    MathSciNet  Google Scholar 

  23. ME. Waddill, Using matrix techniques to establish properties of a generalized Tribonacci sequence (in Applications of Fibonacci Numbers), (1991), 299–308. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991).

  24. Z. H. Weng, Compounding fields and their Quantum equations in the Trigintaduonion space, ar**v: 0704.0136 (2007).

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions which improve the presentation of the paper. The corresponding author thanks the Council of Scientific and Industrial Research (CSIR), India for partial support under Grant No. 25(0288)/18/EMR-II, dated 24/05/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldip Raj.

Additional information

Communicated by Jaydeb Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, K., Raj, K. On generalization for Tribonacci Trigintaduonions. Indian J Pure Appl Math 52, 420–428 (2021). https://doi.org/10.1007/s13226-021-00067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00067-y

Keywords

Mathematics Subject Classification

Navigation