Log in

Immunogenicity Monitoring Cell Chip Incorporating Finger-Actuated Microfluidic and Colorimetric Paper-Based Analytical Functions

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Recently, with the development of microfluidic chips, attempts to integrate cell culture and biomedical material testing functions into a single chip have increased to supplement experimental animal models. Among the evaluations of biomaterials, immunogenicity testing, a current priority, is attracting attention. In this study, we developed a simple and easy-to-handle immunogenicity-testing cell chip to evaluate the immunogenicity of biomaterials. On this chip, macrophages were introduced as immunogenicity indicators, and a micro-paper-based analytical device (µPAD) was used for optical analysis. Macrophages are present in all parts of the body and mediate immune reactions against body implants or bio-derived substances, resulting in the production of hydrogen peroxide. In the cell chamber of the developed cell chip, macrophages grow and react to immunogenic materials. Activated macrophages secrete hydrogen peroxide, which is then transferred to the PAD with single-finger actuation. The hydrogen peroxide molecules reaching the PAD detection zone react with the colorimetric detection substrate, resulting in a color that corresponds to the hydrogen peroxide concentration. With the developed testing chip, the immunogenicity of biomaterials can be determined before administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Primiceri, E., Chiriacò, M.S., Rinaldi, R., Maruccio, G.: Cell chips as new tools for cell biology–results, perspectives and opportunities. Lab Chip 13, 3789–3802 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. Dou, J., Mao, S., Li, H., Lin, J.-M.: Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip. Anal. Chem. 92, 892–898 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. Ceccacci, A.C., et al.: Blu-Ray-based micromechanical characterization platform for biopolymer degradation assessment. Sens. Actuators B Chem. 241, 1303–1309 (2017)

    Article  CAS  Google Scholar 

  4. Li, Z., Seker, E.: Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab Chip 17, 3331–3337 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Esch, E.W., Bahinski, A., Huh, D.: Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhai, J., et al.: Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. Lab Chip 21, 4749–4759 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Jabbar, F., Kim, Y.-S., Lee, S.H.: Biological influence of pulmonary disease conditions induced by particulate matter on microfluidic lung chips. BioChip J. 16, 305–316 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang, S.-M.: Recent advances in microfluidic-based microphysiological systems. BioChip J. 16, 13–26 (2022)

    Article  CAS  Google Scholar 

  9. Wiles, K., Fishman, J.M., De Coppi, P., Birchall, M.A.: The host immune response to tissue-engineered organs: crrent problems and future directions. Tissue Eng. Part B Rev. 22, 208–219 (2016)

    Article  PubMed  Google Scholar 

  10. Petrus-Reurer, S., et al.: Immunological considerations and challenges for regenerative cellular therapies. Commun. Biol. 4, 798 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sadtler, K., et al.: Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040 (2016)

    Article  CAS  Google Scholar 

  12. Moore, E.M., Maestas, D.R., Jr., Comeau, H.Y., Elisseeff, J.H.: The immune system and its contribution to variability in regenerative medicine. Tissue Eng. Part B: Rev. 27, 39–47 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. Hirayama, D., Iida, T., Nakase, H.: The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19, 92 (2018)

    Article  Google Scholar 

  14. Zhang, C., Yang, M., Ericsson, A.C.: Function of macrophages in disease: current understanding on molecular mechanisms. Front. Immunol. 12, 620510 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stuart, L.M., Ezekowitz, R.A.B.: Phagocytosis: elegant complexity. Immunity 22, 539–550 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Elhelu, M.A.: The role of macrophages in immunology. J. Natl. Med. Assoc. 75, 314–317 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Uribe-Querol, E., Rosales, C.: Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11, 1066 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mosser, D.M., Hamidzadeh, K., Goncalves, R.: Macrophages and the maintenance of homeostasis. Cell. Mol. Immunol. 18, 579–587 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. Park, S.-J., et al.: Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat. Commun. 10, 1111 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vázquez-Romero, A., et al.: Multicomponent reactions for de novo synthesis of BODIPY probes: in vivo imaging of phagocytic macrophages. J. Am. Chem. Soc. 135, 16018–16021 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saxena, R.K., Vallyathan, V., Lewis, D.M.: Evidence for lipopolysaccharide-induced differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J. Biosci. 28(129), 134 (2003)

    Google Scholar 

  22. Uchikura, K., et al.: Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G620–G626 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Droge, W.: Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Valko, M., et al.: Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Herb, M., Schramm, M.: Functions of ROS in macrophages and antimicrobial immunity. Antioxidants 10, 313 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Milkovic, L., Gasparovic, A.C., Cindric, M., Mouthuy, P.-A., Zarkovic, N.: Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8, 793 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forman, H.J., Ursini, F., Maiorino, M.: An overview of mechanisms of redox signaling. J. Mol. Cell. Cardiol. 73, 2–9 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L.A., Seliger, B.: Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 13, 39 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J., et al.: ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 4350965 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Redza-Dutordoir, M., Averill-Bates, D.A.: Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863, 2977–2992 (2019)

    Article  Google Scholar 

  31. Torino, S., Corrado, B., Iodice, M., Coppola, G.: PDMS-based microfluidic devices for cell culture. Inventions 3, 65 (2018)

    Article  Google Scholar 

  32. Vickerman, V., Blundo, J., Chung, S., Kamm, R.: esign, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8, 1468–1477 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, S.Y., et al.: Development of gut-mucus chip for intestinal absorption study. BioChip J. (2023). https://doi.org/10.1007/s13206-023-00097-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Park, Y.M., et al.: Integrated pumpless microfluidic chip for the detection of foodborne pathogens by polymerase chain reaction and electrochemical analysis. Sens. Actuators B Chem. 329, 129130 (2021)

    Article  CAS  Google Scholar 

  35. Liebisch, F., Weltin, A., Marzioch, J., Urban, G.A., Kieninger, J.: Zero-consumption Clark-type microsensor for oxygen monitoring in cell culture and organ-on-chip systems. Sens. Actuators B Chem. 322, 128652 (2020)

    Article  CAS  Google Scholar 

  36. Chun, H.J., Park, Y.M., Han, Y.D., Jang, Y.H., Yoon, H.C.: Paper-based glucose biosensing system utilizing a smartphone as a signal reader. BioChip J. 8, 218–226 (2014)

    Article  CAS  Google Scholar 

  37. Liu, M.-M., et al.: MoOx quantum dots with peroxidase-like activity on microfluidic paper-based analytical device for rapid colorimetric detection of H2O2 released from PC12 cells. Sens. Actuators B Chem. 305, 127512 (2020)

    Article  CAS  Google Scholar 

  38. Lim, H., Jafry, A.T., Lee, J.: Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24, 2869 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Im, S.H., et al.: An animal cell culture monitoring system using asmartphone-mountable paper-based analytical device. Sens. Actuators B Chem. 229, 166–173 (2016)

    Article  CAS  Google Scholar 

  40. Kim, S., Lee, J.-H.: Current advances in paper-based biosensor technologies for rapid COVID-19 diagnosis. BioChip 16, 376–396 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Materials Discovery Program (NRF-2019M3D1A1078943) and research grants (NRF-2019R1A6A1A11051471, NRF-2021R1A2C3004180) funded by the National Research Foundation of Korea. H.C.Y also acknowledges the support from the Commercialization Promotion Agency for R & D Outcomes grant funded by the Korean government (2021N100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun C. Yoon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5355 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.W., Yang, E.K., Oh, Y. et al. Immunogenicity Monitoring Cell Chip Incorporating Finger-Actuated Microfluidic and Colorimetric Paper-Based Analytical Functions. BioChip J 17, 329–339 (2023). https://doi.org/10.1007/s13206-023-00111-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00111-5

Keywords

Navigation