Log in

Fabrication of Hydrogel Microchannels Using Aqueous Two-Phase Printing for 3D Blood Brain Barrier

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) surrounds brain cells and prevents external substances from entering the brain through blood vessels. This complicates drug delivery to brain cells, but drugs that can cross the BBB have been developed recently, expanding the scope of treatment for brain diseases. However, traditional biological research typically relies on simple monolayer cell cultures that do not reflect the complex functional properties of human tissues and organs or their responses to external stimuli. Bioprinting technology is gradually overcoming the drawbacks of in vitro models by applying techniques, such as simulating 3D structures, which cannot be realized by biological models, utilizing biocompatible materials and mass cell culture at the tissue level; however, it has been limited to printing microstructural patterns. The in vitro model presented here printed the BBB microstructure in a liquid state, eliminating many defects inherent to printing on a flat surface in air. The aqueous two-phase printing (ATPP) material consisted of a composite matrix capable of phase separation, where three different cell types could be cultured to create a BBB model. The ATPP model will help in central nervous system disease research, drug screening, and drug discovery, because it provides an environment where the nutrient supply and drug concentration of cells can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Derby, B.: Printing and prototy** of tissues and scaffolds. Science 338, 921 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Wu, Y., Ravnic, D.J., Ozbolat, I.T.: Intraoperative bioprinting: repairing tissues and organs in a surgical setting. Trends Biotechnol. 38, 594–605 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, J., Chen, M., Fan, X., Zhou, H.: Recent advances in bioprinting techniques: approaches, applications and future prospects. J. Transl. Med. 14, 271 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Phan, D.T., Bender, R.H.F., Andrejecsk, J.W., Sobrino, A., Hachey, S.J., George, S.C., Hughes, C.C.: Blood–brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood–central nervous system interface. Exp. Biol. Med. 242, 1669–1678 (2017)

    Article  CAS  Google Scholar 

  6. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., Ingber, D.E.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahn, S.I., Sei, Y.J., Park, H.J., Kim, J., Ryu, Y., Choi, J.J., Kim, Y.: Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. (2020). https://doi.org/10.1038/s41467-019-13896-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Teixeira, A.G., Agarwal, R., Ko, K.R., Grant-Burt, J., Leung, B.M., Frampton, J.P.: Emerging biotechnology applications of aqueous two-phase systems. Adv. Healthc. Mater. 7, 1701036 (2017)

    Article  Google Scholar 

  9. Ruthven, M., Ko, K.R., Agarwal, R., Frampton, J.P.: Microscopic evaluation of aqueous two-phase system emulsion characteristics enables rapid determination of critical polymer concentrations for solution micropatterning. Analyst 142, 1938–1945 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Baeten, K.M., Akassoglou, K.: Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev. Neurobiol. 71, 1018–1039 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tekin, H., Simmons, S., Cummings, B., Gao, L., Adiconis, X., Hession, C.C., Zhang, F.: Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nat. Biomed. Eng. 2, 540–554 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moxon, S.R., Corbett, N.J., Fisher, K., Potjewyd, G., Domingos, M., Hooper, N.M.: Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. Mater. Sci. Eng. C. 104, 109904 (2019)

    Article  CAS  Google Scholar 

  13. Veronese, F.M., Mero, A.: The impact of PEGylation on biological therapies. BioDrugs 22, 315–329 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Li, M., Li, H., Li, X., Zhu, H., Xu, Z., Liu, L., Ma, J., Zhang, M.: A Bioinspired alginate-gum Arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl. Mater. Interfaces. 9, 22160–22175 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rastogi, P., Kandasubramanian, B.: Review on alginate-based hydrogel bio-printing for application in tissue engineering. Biofabrication 11, 04200 (2019)

    Article  Google Scholar 

  16. Mondal, A., Gebeyehu, A., Miranda, M., Bahadur, D., Patel, N., Ramakrishnan, S., Singh, M.: Characterization and printability of Sodium alginate-Gelatin hydrogel for bioprinting NSCLC co-culture. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-55034-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luo, Y., Lode, A., Akkineni, A.R., Gelinsky, M.L.: Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. R. Soc. Chem. 5, 43480–43488 (2015)

    CAS  Google Scholar 

  18. Cavo, M., Caria, M., Pulsoni, I., Beltrame, F., Fato, M., Scaglione, S.: A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo.” Sci. Rep. 8, 5333 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, J., Han, D., Zhao, Y.-P.: Kinetic behaviour of the cells touching substrate: the interfacial stiffness guides cell spreading. Sci. Rep. (2014). https://doi.org/10.1038/srep03910

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jeong, S., Kang, H.W., Kim, S.H., Hong, G.S., Nam, M.H., Seong, J., Yoon, E.S., Cho, I.J., Chung, S., Bang, S., Kim, H.N., Choi, N.: Integration of reconfigurable microchannels into aligned three-dimensional neural networks for spatially controllable neuromodulation. Sci. Adv. 9(10), eadf0925 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ahn, J., Ohk, K., Won, J., Choi, D.H., Jung, Y.H., Yang, J.H., Jun, Y., Kim, J.A., Chung, S., Lee, S.H.: Modeling of three-dimensional innervated epidermal like-layer in a microfluidic chip-based coculture system. Nat. Commun. 14, 1488 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams, V., Grossman, R.G., Edmunds, S.M.: Volume and surface area estimates of astrocytes in the sensorimotor cortex of the cat. Neuroscience 5(7), 1151–1159 (1980)

    Article  CAS  PubMed  Google Scholar 

  23. Vasile, F., Dossi, E., Rouach, N.: Human astrocytes: structure and functions in the healthy brain. Brain Struct. Funct. 222, 2017–2029 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung, B.J., Jang, H., Lee, G.Y., Kim, J., Song, Z., Pyun, J.C.: Surface functionalization and bonding of chemically inert parylene microfluidics using parylene-a adhesive layer. Biochip J. 16, 168–174 (2022)

    Article  CAS  Google Scholar 

  25. Kang, S.M.: Recent advances in microfluidic-based microphysiological systems. Biochip J. 16, 13–26 (2022)

    Article  CAS  Google Scholar 

  26. Aladese, A.D., Jeong, H.H.: Recent developments in 3D printing of droplet-based microfluidics. Biochip J. 15, 313–333 (2021)

    Article  CAS  Google Scholar 

  27. Perez-Lopez, A., Torres-Suarez, A.I., Martin-Sabroso, C., Aparicio-Blanco, J.: An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv Drug Deliv Rev 196, 114816 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a National Research Foundation of Korea Grant funded by the Ministry of Trade, Industry, and Energy (№ 20009660). Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship–Master’s (CGS-M) program. Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Research Chairs (CRC) program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John P. Frampton, Nakwon Choi or Seok Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hyunjik Oh, Min** Kang these authors share first authorship. John P. Frampton, Nakwon Choi, Seok Chung these authors share corresponding authors status.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H., Kang, M., Bae, E. et al. Fabrication of Hydrogel Microchannels Using Aqueous Two-Phase Printing for 3D Blood Brain Barrier. BioChip J 17, 369–383 (2023). https://doi.org/10.1007/s13206-023-00110-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00110-6

Keywords

Navigation