Log in

Cytochrome P450 oxidase SlgO1 catalyzes the biotransformation of tirandamycin C to a new tirandamycin derivative

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, an Escherichia coli whole cell system with overexpression of a cytochrome P450 oxidase SlgO1 involved in streptolydigin biosynthetic pathway, an E. coli flavodoxin NADP+ oxidoreductase (EcFLDR), and an E. coli flavodoxin A (EcFLDA) were constructed. Biotransformation experiments revealed that SlgO1 can convert tirandamycin C to tirandamycin F, indicating that it can introduce a hydroxyl group into the C-10 position of tirandamycin C. Subsequently, slgO1 was cloned into pSET152AKE vector under the downstream of ermE* promoter, which was, respectively, introduced into Streptomyces sp. SCSIO1666 (tirandamycin B producer), Streptomyces sp. Ju1008 (tirandamycin C producer), and Streptomyces sp. Ju1009 (tirandamycin E producer). A novel tirandamycin derivative tirandamycin L accumulated in the engineered strain Streptomyces sp. Ju1008::slgO1 was isolated and its structure was determined on the basis of nuclear magnetic resonance (NMR) and mass spectrometry. Unlike most of the identified tirandamycins, tirandamycin L possessed a rare C-11–C-12 saturated bond as well as a C-10 ketone moiety. In addition, tirandamycin L showed weaker antibacterial activity. Based on the structure of tirandamycin L, SlgO1 was proposed to be responsible for multiple modifications toward tirandamycin C, including the formation of C-10 hydroxyl and C-11–C-12 saturated bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkhalaf LM, Barry S, Rea D, Gallo A, Griffiths D, Lewandowski J, Fülöp V, Challis GL (2019) Binding of distinct substrate conformations enables hydroxylation of remote sites in thaxtomin D by cytochrome P450 TxtC. J Am Chem Soc 141(1):216–222

    Article  CAS  Google Scholar 

  • Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98(14):6185–6203

    Article  CAS  Google Scholar 

  • Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH (2010) Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. ChemBioChem 11(4):564–572

    Article  CAS  Google Scholar 

  • Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM, Sherman DH (2011) Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem 3(8):628–633

    Article  CAS  Google Scholar 

  • Cochrane RV, Vederas JC (2014) Highly selective but multifunctional oxygenases in secondary metabolism. Acc Chem Res 47(10):3148–3161

    Article  CAS  Google Scholar 

  • Coon MJ (2005) Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25

    Article  CAS  Google Scholar 

  • Duan C, Yao Y, Wang Z, Tian X, Zhang S, Zhang C, Ju J (2010) Fermentation optimization, isolation and identification of tirandamycins A and B from marine-derived Streptomyces sp. SCSIO 1666. Chin J Mar Drugs 29(6):12–20

    CAS  Google Scholar 

  • Girvan HM, Munro AW (2016) Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr Opin Chem Biol 31:136–145

    Article  CAS  Google Scholar 

  • Gómez C, Olano C, Palomino-Schätzlein M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA (2012) Novel compounds produced by Streptomyces lydicus NRRL2433 engineered mutants altered in the biosynthesis of streptolydigin. J Antibiot 65(7):341–348

    Article  Google Scholar 

  • Lewis DFV, Wiseman A (2005) A selective review of bacterial forms of cytochrome P450 enzymes. Enzym Microb Technol 36(4):377–384

    Article  CAS  Google Scholar 

  • Ma J, Wang Z, Huang H, Luo M, Zuo D, Wang B, Sun A, Cheng YQ, Zhang C, Ju J (2011) Biosynthesis of himastatin: assembly line and characterization of three cytochrome P450 enzymes involved in the post-tailoring oxidative steps. Angew Chem Int Ed 50(34):7797–7802

    Article  CAS  Google Scholar 

  • Macneil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, Macneil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  Google Scholar 

  • McIver L, Leadbeater C, Campopiano DJ, Baxter RL, Daff SN, Chapman SK, Munro AW (1998) Characterisation of flavodoxin NADP+ oxidoreductase and flavodoxin; key components of electron transfer in Escherichia coli. Eur J Biochem 257(3):577–585

    Article  CAS  Google Scholar 

  • Mo X, Wang Z, Wang B, Ma J, Huang H, Tian X, Zhang S, Zhang C, Ju J (2011a) Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun 406(3):341–347

    Article  CAS  Google Scholar 

  • Mo X, Huang H, Ma J, Wang Z, Wang B, Zhang S, Zhang C, Ju J (2011b) Characterization of TrdL as a 10-hydroxy dehydrogenase and generation of new analogues from an tirandamycin biosynthetic pathway. Org Lett 13(9):2212–2215

    Article  CAS  Google Scholar 

  • Mo X, Ma J, Huang H, Wang Z, Wang B, Zhang S, Zhang C, Ju J (2012) ∆(11,12) double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme. J Am Chem Soc 134(6):2844–2847

    Article  CAS  Google Scholar 

  • Mo X, Li Q, Ju J (2014) Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity. RSC Adv 4:450566–450593

    Article  Google Scholar 

  • Mo X, Shi C, Gui C, Zhang Y, Ju J, Wang Q (2017) Identification of nocamycin biosynthetic gene cluster from Saccharothrix syringae NRRL B-16468 and generation of new nocamycin derivatives by manipulating gene cluster. Microb Cell Fact 16(1):100

    Article  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ (2007) Cytochrome P450-redox partner fusion enzymes. Biochim Biophys Acta 1770(3):345–359

    Article  CAS  Google Scholar 

  • Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ (2013) What makes a P450 tick? Trends Biochem Sci 38(3):140–150

    Article  CAS  Google Scholar 

  • Olano C, Gómez C, Pérez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA (2009) Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem Biol 16(10):1031–1044

    Article  CAS  Google Scholar 

  • Rudolf JD, Chang CY, Ma M, Shen B (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 34(9):1141–1172

    Article  CAS  Google Scholar 

  • **ao J, Zhang Q, Zhu Y, Li S, Zhang G, Zhang H, Saurav K, Zhang C (2013) Characterization of the sugar-O-methyltransferase LobS1 in lobophorin biosynthesis. Appl Microbiol Biotechnol 97(20):9043–9053

    Article  CAS  Google Scholar 

  • Yu Z, Vodanovic-Jankovic S, Ledeboer N, Huang SX, Rajski SR, Kron M, Shen B (2011) Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagines tRNA synthetase. Org Lett 13(8):2034–2037

    Article  CAS  Google Scholar 

  • Zhang X, Li S (2017) Expansion of chemical space for natural products by uncommon P450 reactions. Nat Prod Rep 34(9):1061–1089

    Article  CAS  Google Scholar 

  • Zhou H, Wang B, Wang F, Yu X, Ma L, Li A, Reetz MT (2019) Chemo- and regioselective dihydroxylation of benzene to hydroquinone enabled by engineered cytochrome P450 monooxygenase. Angew Chem Int Ed Engl 58(3):764–768

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Professor Jianhua Ju for providing the tirandamycin-producing strains. Research in this work was supported by Natural Science Foundation of Shandong Province (No. ZR2013CL020) and Research Foundation for Advanced Talents of Qingdao Agricultural University (No. 631301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhua Mo.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest with respect to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 806 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, X., Gui, C. & Yang, S. Cytochrome P450 oxidase SlgO1 catalyzes the biotransformation of tirandamycin C to a new tirandamycin derivative. 3 Biotech 9, 71 (2019). https://doi.org/10.1007/s13205-019-1611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1611-1

Keywords

Navigation