Log in

Global challenges faced by engineered Bacillus thuringiensis Cry genes in soybean (Glycine max L.) in the twenty-first century

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The most important insect pests causing severe economic damages to soybean (Glycine max L.) production worldwide are Chrysodeixis includens (Walker, Noctuidae), Anticarsia gemmatalis (Hübner, Erebidae), Helicoverpa gelotopoeon (Dyar, Noctuidae), Crocidosema aporema (Walsingham; Tortricidae), Spodoptera albula (Walker, Noctuidae), S. cosmiodes (Walker, Noctuidae), S. eridania (Stoll, Noctuidae), S. frugiperda (Smith; Noctuidae), Helicoverpa armigera (Hübner, Noctuidae), H. zea (Boddie; Noctuidae) and Telenomus podisi (Hymenoptera,Platygastidae). Despite the success of biotech Bacillus thuringiensis (Bt)/herbicide tolerance (HT)-soybean in the past decade in terms of output, unforeseen mitigated performances have been observed due to changes in climatic events that favors the emergence of insect resistance. Thus, there is a need to develop hybrids with elaborated gene stacking to avert the upsurge in insect field tolerance to crystal (Cry) toxins in Bt-soybean. This study covers the performance of important commercial transgenic soybean developed to outwit destructive insects. New gene stacking soybean events such as Cry1Ac-, Cry1AF- and PAT-soybean (DAS-81419-2®, Conkesta™ technology), and MON-87751-7 × MON-87701–2 × MON 87708 × MON 89788 (bearing Cry1A.105 [Cry1Ab, Cry1F, Cry1Ac], Cry2Ab, Cry1Ac) are being approved and deployed in fields. Following this deployment trend, we recommend herein that plant-mediated RNA interference into Bt-soybean, and the application of RNA-based pesticides that is complemented by other best agricultural practices such as refuge compliance, and periodic application of low-level insecticides could maximize trait durability in Bt-soybean production in the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PMRi:

Plant-mediated RNA interference

Bt:

Bacillus thuringiensis

HT:

Herbicide tolerance

GM:

Genetically modified

MAB:

Marker-assisted breeding

PAT:

Phosphinothricin acetyltransferase

AICc:

Akaike Information Criterion, corrected

BIC:

Bayesian Information Criterion

Cry:

Crystal

References

  • Addison SJ, Rogers DJ (2010) Potential impact of differential production of the Cry2Ab and Cry1Ac proteins in transgenic cotton in response to cold stress. J Econ Entomol 103:1206–1215

    CAS  PubMed  Google Scholar 

  • Aranda E, Sanchez J, Peferoen M, Guereca L, Bravo A (1996) Interactions ofBacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68:203–212

    CAS  PubMed  Google Scholar 

  • Azambuja R, Degrande PE, Dos-Santos RO, De-Souza EP, Gomes CEC (2015) Effect of Bt-soybean on larvae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Agric Sci 7(8):90–94

    Google Scholar 

  • Bebber DP, Sarah JG (2015) Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet Biol 74:62–64

    PubMed  Google Scholar 

  • Bernardi O, Malvestiti GS, Dourado PM, Oliveira WS, Martinelli S, Berger GU, Head GP, Omoto C (2012) Assessment of the high-dose concept and level of control provided by MON 87701 × MON 87788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 68:1083–1091

    CAS  PubMed  Google Scholar 

  • Bernardi O, Sorgatto RJ, Barbosa AD, Domingues FA, Dourado PM, Carvalho RA, Martinelli S, Head GP, Omoto C (2014) Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modifed soybean expressing Cry1Ac protein. Crop Prot 58:33–40

    CAS  Google Scholar 

  • Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, Mueller G, Tan J, Uffman J, Wiggins E, Heck G, Segers G (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7(10):e47534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bortolotto OC, Silva GV, Bueno AF, Pomari AF, Martinelli S, Head GP, Carvalho RA, Barbosa GC (2014) Development and reproduction of Spodoptera eridania (Lepidoptera: Noctuidae) and its egg parasitoid Telenomus remus (Hymenoptera: Platygastridae) on the genetically modified soybean (Bt) MON 87701 × MON 89788. Bull Entomol Res 104:724–730

    CAS  PubMed  Google Scholar 

  • Chen D, Ye G, Yang C, Chen Y, Wu Y (2005) The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot 53:333e342

    Google Scholar 

  • Chen FJ, Wu G, Ge F, Parajulee MN (2011) Relationships between exogenoustoxin quantity and increased biomass of transgenic Bt-crops under elevated carbondioxide. Ecotoxicol Environ Saf 74:1074–1080

    CAS  PubMed  Google Scholar 

  • Christiaens O, Tardajos MG, Martinez-Reyna ZL, Dash M, Dubruel P, Smagghe G (2018) Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front Physiol 9:316

    PubMed  PubMed Central  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Vantoai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Daniell H (2000) Genetically modified food crops: current concerns and solutions for next generation food crops. Biotechnol Genet Eng Rev 17:327–352

    CAS  PubMed  Google Scholar 

  • Dang W, Wei Z-M (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389

    CAS  Google Scholar 

  • de Maagd RA, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66(4):1559–1563

    PubMed  PubMed Central  Google Scholar 

  • De-Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    CAS  PubMed  Google Scholar 

  • De-Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    CAS  PubMed  Google Scholar 

  • Dillie JA, Sikkema PH, Everman WJ, Davis VM, Burke IC (2016) Perspectives on soybean yield losses due to weeds in North America. http://wssa.net/wp-content/uploads/WSSA-2016-Soybean-Yield-Loss-poster.pdf. Accessed Jan 2016

  • Dong HZ, Li WJ (2007) Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci 193:21–29

    CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garςon F, Muhr C, Jansens B, Pelissier B (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    CAS  PubMed  Google Scholar 

  • Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. J Plant Biotechnol 5:118–133

    CAS  Google Scholar 

  • EPA (2016) RNAi technology: human health and ecological risk assessments fr SmartStax PRO. 42706: Federal Register. 81(126). https://www.gpo.gov/fdsys/pkg/FR-2016-06-30/pdf/2016-15589.pdf. Accessed 30 June 2016

  • Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel MG (1996) Transgenic plants: an emerging approach to pest control. Nat Biotechnol 15:137

    Google Scholar 

  • Evans LT (1998) Feeding the ten billion. Plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Fabrick JA, Tabashnik BE (2012) Similar genetic basis of resistance to Bt toxin Cry1Ac in boll-selected and diet-selected strains of pink bollworm. PLoS One 7:e35658

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2012) Rome, IT, Statistics Division of FAO. http://faostat.fao.org/site/339/default.aspx. Accessed 10 Dec 2011

  • Fast BJ, Schafer AC, Jonson TY, Potts BL, Herman RA (2015) Insect-protected event DAS-81419-2 soybean (Glycine max L.) grown in the United States and Brazil is compositionally equivalent to non-transgenic soybean. J Agr Food Chem 63:2063e2073

    Google Scholar 

  • Ferre J, van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    CAS  PubMed  Google Scholar 

  • Fickett ND, Stoltenberg DE, Boerboom CM, Hammond CM (2009) Estimated economic losses from early weed competition in Wisconsin corn and soybean fields. N Cent Weed Sci Soc Proc 64:93

    Google Scholar 

  • Gamundi JC, Sosa MA (2008) Caracterización de daňos de chinches en soja y criterios para la tomada de decisions de manejo, pp 29–148. In: Trumper EV, Edelstein JD (eds) Chindes fitófages en soja. Revisión y avances en el studio de su ecología y manejo. Ediciones INTA, Manfredi, Buenos Aires, p 190

    Google Scholar 

  • Greenberg SM, Li YX, Liu TX (2010) Effect of age of transgenic cotton on mortality of lepidopteran larvae. Southwest Entomol 35:261–268

    Google Scholar 

  • Griffitts JS, Aroian RV (2005) Many roads to resistance: how invertebrates adapt to Bt toxins. BioEssays 27(6):614–624

    PubMed  Google Scholar 

  • Grossi-de-Sá MF, Pelegrini PB, Fragoso RR (2011) Genetically modified soybean for insect-pest and disease control, pp 429–452. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/42556/1/FRAGOSO-S1424.pdf. Accessed 11 Apr 2011

  • Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD (2005) New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 71:558–2563

    Google Scholar 

  • Guo H, Song X, Wang G, Yang K, Wang Y et al (2014) Plant-generated artificial small RNAs mediated aphid resistance. PLoS One 9(5):e97410. https://doi.org/10.1371/journal.pone.0097410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbucher S, Olson DM, Ruberson JR, Wäckers FL, Romeis J (2013) Resistance mechanisms against arthropod herbivores in cotton and their interactions with natural enemies. Crit Rev Plant Sci 32:458–482

    CAS  Google Scholar 

  • Han Q, Wang Z, He Y, **ong Y, Lv S, Li S, Zhang Z, Qiu D, Zeng H (2017) Transgenic cotton plants expressing the HaHR3 gene conferred enhanced resistance to Helicoverpa armigera and improved cotton yield. Int J Mol Sci 18:1274. https://doi.org/10.3390/ijms18091874

    Article  CAS  Google Scholar 

  • Hartman GL, West ED, Herman TK (2011) Crops that feed the world 2. Soybean—worldwide production, use, and constraints caused by pathogens and pest. Food Secur 3:5–17

    Google Scholar 

  • Haverkort A, Verhagen A (2008) Climate change and its repercussions for the potato supply chain. Potato Res 51:223–237

    Google Scholar 

  • Ibrahim RA, Shawer DM (2014) Transgenic Bt-plants and the future of crop protection (an overview). Int J Agric Food Res 3(1):14–40

    Google Scholar 

  • ISAAA (2016) International Service for the Acquisition of Agribiotech Applications (ISAAA). http://www.isaaa.org/resources/publications/pocketk/16/. Accessed June 2016

  • Ishiwata S (1901) On a kind of severe flasherie (sotto disease). Danihan Sanbshi Kaiho 9:1–5

    Google Scholar 

  • James C (2010) Global status of commercialized biotech GM Crops: 2010 International Service for the Acquisition of Agri-biotech Applications (ISAAA). ISAAA Briefs brief 42, Ithaca, NY

    Google Scholar 

  • James C (2015) 20th Anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA brief No. 51. ISAAA, Ithaca

    Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding-A broad spectrum technique for develo** durable stress resistance in crops. Biotechnol Mol Biol 5(3):51–60

    CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modelling, prediction and analysis. Nation Protoc 10:845–858

    CAS  Google Scholar 

  • Kogan M, Ortman EF (1978) Antixenosis: a new term proposed to define Painter’s non-preference modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Kranthi KR, Naidu S, Dhawad CS, Tatwawadi A, Mate K (2005) Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and it influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Curr Sci 89:291–298

    CAS  Google Scholar 

  • Kumar S, Kumari R (2015) Occurrence of molecularly diverse Bt Cry toxin-resistant mutations in insect pests of Bt + corn and cotton crops and remedial approaches. Curr Sci 108(8):1483–1450

    CAS  Google Scholar 

  • Lang A, Otto M (2010) A synthesis of laboratory and field studies on the effects of transgenic Bacillus thurengiensis (Bt) maize on non-target Lepidoptera. Entomol Exp Appl 135:121–134

    Google Scholar 

  • Loguercio LL, Santos CG, Barreto MR, Guimarẩes CT, Paaiva E (2001) Association of PCR and feeding bioassays as a large-scale method to screen tropical Bacillus thuringiensis isolates for a Cry constitution with higher insecticidal effect against Spodoptera frugiperda (Lepidoptera: Nuctuidae) larvae. Lett Appl Microbiol 32:362–367

    CAS  PubMed  Google Scholar 

  • Louis B, Sayanika DW, Pranab R, Pardeep KB, Wakambam MS, Talukdar NC (2014) Host shifting dynamics of Cochliobolus lunatus: from a biocontrol agent to a severe environmental threat. Biomed Res Int 2014:9. https://doi.org/10.1155/2014/378372 (Article ID 378372)

    Article  Google Scholar 

  • Luo Z, Dong H, Li W, Zhao M, Zhu Y (2008) Individual and combined effects of salinity and waterlogging on Cry1Ac expression and insecticidal efficacy of Bt-cotton. Crop Prot 27:1485e1490

    Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    CAS  PubMed  Google Scholar 

  • Mao Y-B, Tao X-Y, Xue X-Y, Wang L-J, Chen X-Y (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    CAS  PubMed  Google Scholar 

  • Marques LH, Santos AC, Castro BA, Moscardini VF, Silva RJ, Zobiole OAN, L.H.S., et al (2017) Field evaluation of soybean transgenic event DAS-81419-2 expressing Cry1F and Cry1Ac proteins for the control of secondary lepidopteranpests in Brazil. Crop Prot 96:109–115

    CAS  Google Scholar 

  • Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and long-term projections. Int Food Agribus Manag Assoc 12(4):143–162

    Google Scholar 

  • Mcpherson RM, Macrae TC (2009) Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis Cry1A transgene for suppressing lepidopteran population densities and crop injury. J Econ Entomol 102(4):1640–1648

    CAS  PubMed  Google Scholar 

  • Mikkelsen TR, Andersen B, Jørgensen RB (1996) The risk of crop transgene spread. Nature 380:31

    CAS  Google Scholar 

  • Miranda R, Zamudio F, Bravo A (2001) Processing of Cry1Ab d-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation. Insect Biochem Mol Biol 31:1155–1163

    CAS  PubMed  Google Scholar 

  • Monsanto (2012) IRM grower guide: insect resistance management for US corn- and cotton-growing areas. http://www.monsanto.com/SiteCollectionDocuments/IRM-Grower-Guide.pdf. Accessed 29 Apr 2012

  • Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. PNAS 100:5004–5009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Cohn J, Chaufaux J, Buisson C, Gilois N, Sanchis V, Lereclus D (1996) Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to Cry1C and cross resistance to other Bacillus thuringiensis crystal toxins. J Econ Entomol 89:791–797

    Google Scholar 

  • Musser FR, Catchot AL Jr, Davis JA, Herbert DA Jr, Lorenz GM, Reed T, Reisig DD, Stewart SD (2014) 2013 soybean insect losses in the southern US. Midsouth Entomol 7:15–28

    Google Scholar 

  • Musser FR, Catchot AL Jr, Davis JA, Herbert DA Jr, Lorenz GM, Reed T, Reisig DD, Stewart SD (2015) 2014 soybean insect losses in the southern US. Midsouth Entomol 8:35–48

    Google Scholar 

  • Musser FR, Catchot AL Jr, Davis JA, Herbert DA Jr, Lorenz GM, Reed T, Reisig DD, Stewart SD (2016) 2015 soybean insect losses in the southern US. Midsouth Entomol 9:5–17

    Google Scholar 

  • Musser FR, Catchot AL Jr, Davis JA, Lorenz GM, Reed T, Reisig DD, Stewart SD, Taylor S (2017) 2016 soybean insect losses in the southern US. Midsouth Entomol 10:1–13

    Google Scholar 

  • Ortega MA, All JN, Boerma HR, Parrott WA (2016) Pyramids of QTLs enhance host–plant resistance and Bt mediated resistance to leaf chewing insects in soybean. Theor Appl Genet 129:703–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Painter RH (2005) Insect resistance in crop plants. Soil Sci 72:481

    Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their bioacidal activity. Toxins 6:3296–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo-Lopez L, Gomez I, Rausell C, Sanchez J, Soberon M (2006) Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Biochemistry 45:10329–10336

    CAS  PubMed  Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart Jr CN (1994) Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki Insecticidal gene. In Vitro Cell Dev Biol 30P:144–149

    CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA (1990) Insect resistant cotton plants. Bio-Technololgy 8:939–943

    CAS  Google Scholar 

  • Poreddy S, Li J, Baldwin IT (2017) Plant-mediated RNAi silences midgut expressed genes in congeneric lepidopteran insects in nature. BMC Plant Biol 17:199. https://doi.org/10.1186/s12870-017-1149-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman K, Abdullah M, Ambati S, Taylor MD, Adang MJ (2012) Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism. Appl Environ Micro 78:354–362

    CAS  Google Scholar 

  • Ranjith-Kumar CT, Lai Y, Sarisky RT, Cheng Kao C (2010) Green tea catechin, epigallocatechin gallate, suppresses signaling by the dsRNA innate immune receptor RIG-I. PLoS One 5:e12878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond B, Johnston PR, Nielsen-leroux C, Lereclus D, Crickmore N (2010) Bacillus thurengiensis: an impotent pathogen? Trends Microbiol 18:189–194

    CAS  PubMed  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (2000a) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci 40:233–238

    Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (2000b) Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci 40:531–538

    Google Scholar 

  • Rochester IJ (2006) Effect of genotype, edaphic, environmental conditions and agronomic practices on Cry1Ac protein expression in transgenic cotton. J Cotton Sci 10:252–262

    CAS  Google Scholar 

  • Shurtleff W, Aoyagi A (2013) History of whole dry soybeans, used as beans, or ground, mashed or flaked (240 BCE to 2013). Lafayette, California, p 950

  • Silva GV, Pasini A, Bueno A-de-F, Bortolotto OC, Barbosa GC, Cruz YKS (2014) No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae) and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae). Rev Bras Entomol 58(3):285–290

    Google Scholar 

  • Silva GV, de Bueno AF, Bortolotto OC, Dos-Santos A, Pomari-Fernandes A (2016) Biological characteristics of black armyworm Spodoptera cosmioides on genetically modified soybean and corn crops that express insecticide Cry proteins. Rev Bras Entomol 60:255–259

    Google Scholar 

  • Sosa-Gómes DR, Silva JJ (2010) Neotropical brown stink bug (Euschitus heros) resistance to methamidophos in Paraná, Brazil. Pesqui Agropecu Bras 45:767–811

    Google Scholar 

  • Stein AJ, Rodríguez-Cerezo E (2009) The global pipeline of new GM crops: implications of asynchronous approval for international trade. JRC Technical Report EUR 23486 EN. Office for Official Publications of the European Communities, Luxembourg. http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=2420. Accessed 03 Sept 2009

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis CryIAc gene. Plant Physiol 112(1):121–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugan M (2005) Soy in health and disease prevention. CRC Press, New York

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tay WT, Soria MF, Walsh T, Thomazoni D, Silvie P, Gajanan TB, Sharon D (2013) A brave new world for an old-world Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS One 8(11):80134

    Google Scholar 

  • Tian G, Cheng L, Qi X, Ge Z, Niu C, Zhang X, ** S (2015) Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci 11(11):1296–1305. https://doi.org/10.7150/ijbs.12463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA (2017) World agricultural supply and demand estimates, economic research service and foreign agricultural service. https://www.usda.gov/oce/commodity/wasde/latest.pdf (ISSN:1554-9089)

  • Vélez AM, Jurzenski J, Matz N, Zhou X, Wang H, Ellis M, Siegfried BD (2016) Develo** an in vivo toxicity assay for RNAi risk assessment in honey bees Apis mellifera L.. Chemosphere 144:1083–1090

    PubMed  Google Scholar 

  • Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QTL that enhances and broadens Bt insect resistance in soybean. Theor Appl Genet 109(5):1051–1057

    PubMed  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, ** H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Takagi K, Ishimoto M (2012) Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breed Sci 61:480–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Romeis J, Li Y, Li X, Wu K (2014) Acquisition of Cry1Ac protein by non-target arthropods in Bt-soybean fields. PLoS One 9(8):e103973

    PubMed  PubMed Central  Google Scholar 

  • Zhuang M, Oltean DI, Gomez I, Pullikuth AK, Soberon M (2002) Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 277:13863–13872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by The World Academy of Sciences (TWAS), Trieste, Italy and the Department of Biotechnology, Government of India (DBT/TWAS PG fellowship no. 3240223450) and Alexander von Humbolt (AvH) foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Bengyella.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengyella, L., Yekwa, E.L., Iftikhar, S. et al. Global challenges faced by engineered Bacillus thuringiensis Cry genes in soybean (Glycine max L.) in the twenty-first century. 3 Biotech 8, 464 (2018). https://doi.org/10.1007/s13205-018-1484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1484-8

Keywords

Navigation