Log in

Organ-specific therapeutic nanoparticles generates radiolucent reactive species for potential nanotheranostics using conventional X-ray technique in mammals

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

New diagnostic strategy for the better management of diseases is the need of the hour. However, in most cases, these new diagnostic techniques are expensive and require trained expertise. To develop a cost-effective and easy technique, modification of some of the conventional diagnostic techniques can be useful. Here, we report the use of citrate-functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs) as a targeted X-ray contrast agent for lungs and brain in mice model. While the bio-distribution of the NPs is reported earlier and found to be useful for the reversal of disorders in some specific organs, we report the direct observation of the accumulation of reactive oxygen species (ROS) using X-ray induced radiolucency. Our detailed analysis on X-ray images of lungs in mice model reveals lower contrast compared to that of the control group indicating NPs induced ROS in the organs. Various lobes of NP-treated mice brain are also clearly visible compared to that of the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available on request to the corresponding author.

References

  • Adhikari A, Polley N, Darbar S, Bagchi D, Pal SK (2016) Citrate functionalized Mn3O4 in nanotherapy of hepatic fibrosis by oral administration. Future Sci OA 2:FSO146

    Article  Google Scholar 

  • Adhikari A, Das M, Mondal S, Darbar S, Das AK, Bhattacharya SS, Pal D, Pal SK (2019) Manganese neurotoxicity: nano-oxide compensates for ion-damage in mammals. Biomater Sci 7:4491–4502

    Article  CAS  Google Scholar 

  • Adhikari A, Biswas P, Mondal S, Das M, Darbar S, Hameed AM, Alharbi A, Ahmed SA, Sankar Bhattacharya S, Pal D (2020) A smart nanotherapeutic agent for in vitro and in vivo reversal of heavy-metal-induced causality: key information from optical spectroscopy. ChemMedChem 15:420–429

    Article  CAS  Google Scholar 

  • Adhikari A, Mondal S, Chatterjee T, Das M, Biswas P, Ghosh R, Darbar S, Alessa H, Althakafy JT, Sayqal A (2021a) Redox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice. Commun Biol 4:1–15

    Article  CAS  Google Scholar 

  • Adhikari A, Mondal S, Das M, Ghosh R, Biswas P, Darbar S, Singh S, Das AK, Bhattacharya SS, Pal D (2021b) Redox buffering capacity of nanomaterials as an index of ROS-based therapeutics and toxicity: a preclinical animal study. ACS Biomater Sci Eng 1:23

    Google Scholar 

  • Adhikari A, Mondal S, Das M, Biswas P, Pal U, Darbar S, Bhattacharya SS, Pal D, Saha-Dasgupta T, Das AK (2021c) Incorporation of a biocompatible nanozyme in cellular antioxidant enzyme cascade reverses Huntington’s like disorder in preclinical model. Adv Healthcare Mater 10:2001736

    Article  CAS  Google Scholar 

  • Baldwin GN (1978) Computed tomography of the pancreas: negative contrast medium. Radiology 128:827–828

    Article  CAS  Google Scholar 

  • Cai Z, Wu C, Yang L, Wang D, Ai H (2020) Assembly-controlled magnetic nanoparticle clusters as MRI contrast agents. ACS Biomater Sci Eng 6:2533–2542

    Article  CAS  Google Scholar 

  • Chapman MN, Nadgir RN, Akman AS, Saito N, Sekiya K, Kaneda T, Sakai O (2013) Periapical lucency around the tooth: radiologic evaluation and differential diagnosis. Radiographics 33:E15–E32

    Article  Google Scholar 

  • Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nuclear Med 55:1919–1922

    Article  CAS  Google Scholar 

  • Chen K-T, Wei K-C, Liu H-L (2019) Theranostic strategy of focused ultrasound induced blood–brain barrier opening for CNS disease treatment. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00086

    Article  Google Scholar 

  • Cho MH, Choi E-S, Kim S, Goh S-H, Choi Y (2017) Redox-responsive manganese dioxide nanoparticles for enhanced MR imaging and radiotherapy of lung cancer. Front Chem 5:109

    Article  Google Scholar 

  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 10:321–341

    Article  CAS  Google Scholar 

  • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  CAS  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • Georgiou A, Ulloa PC, Van Kessel G, Crielaard W, Van der Waal S (2021) Reactive oxygen species can be traced locally and systemically in apical periodontitis: a systematic review. Arch Oral Biol 129:105167

    Article  CAS  Google Scholar 

  • Giri A, Goswami N, Pal M, Myint MTZ, Al-Harthi S, Singha A, Ghosh B, Dutta J, Pal SK (2013) Rational surface modification of Mn3O4 nanoparticles to induce multiple photoluminescence and room temperature ferromagnetism. J Mater Chem C 1:1885–1895

    Article  CAS  Google Scholar 

  • Giri A, Goswami N, Sasmal C, Polley N, Majumdar D, Sarkar S, Bandyopadhyay SN, Singha A, Pal SK (2014) Unprecedented catalytic activity of Mn3O4 nanoparticles: potential lead of a sustainable therapeutic agent for hyperbilirubinemia. RSC Adv 4:5075–5079

    Article  CAS  Google Scholar 

  • Griffith JF, Genant HK (2013) Chapter 64—imaging of osteoporosis. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA (eds) Osteoporosis, 4th edn. Academic Press, San Diego, pp 1505–1534

    Chapter  Google Scholar 

  • Hamlin DJ, Burgener FA (1981) Positive and negative contrast agents in CT evaluation of the abdomen and pelvis. J Comput Tomogr 5:82–90

    Article  CAS  Google Scholar 

  • Hernández-Ríos P, Pussinen PJ, Vernal R, Hernández M (2017) Oxidative stress in the local and systemic events of apical periodontitis. Front Physiol 8:869

    Article  Google Scholar 

  • Huumonen S, Ørstavik D (2002) Radiological aspects of apical periodontitis. Endod Top 1:3–25

    Article  Google Scholar 

  • Jakovljevic A, Andric M, Miletic M, Beljic-Ivanovic K, Knezevic A, Mojsilovic S, Milasin J (2016) Epstein-Barr virus infection induces bone resorption in apical periodontitis via increased production of reactive oxygen species. Med Hypotheses 94:40–42

    Article  CAS  Google Scholar 

  • Jeevanandam J, Tan KX, Danquah MK, Guo H, Turgeson A (2020) Advancing aptamers as molecular probes for cancer theranostic applications—the role of molecular dynamics simulation. Biotechnol J 15:1900368

    Article  CAS  Google Scholar 

  • Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44:1050–1060

    Article  CAS  Google Scholar 

  • Kermanian M, Sadighian S, Ramazani A, Naghibi M, Khoshkam M, Ghezelbash P (2021) Inulin-coated iron oxide nanoparticles: a theranostic platform for contrast-enhanced MR imaging of acute hepatic failure. ACS Biomater Sci Eng 7:2701–2715

    Article  CAS  Google Scholar 

  • Kevles B (1997) Naked to the bone: medical imaging in the twentieth century. Rutgers University Press, New Jersey

    Google Scholar 

  • Lloyd-Jones DG (2016) Basics of X-ray physics [Online]. https://www.radiologymasterclass.co.uk/tutorials/physics/x-ray_physics_densities#top_2nd_img. Accessed December 04, 2021

  • Lloyd-Jones DG (2020) Chest X-ray anatomy. https://www.radiologymasterclass.co.uk/tutorials/chest/chest_home_anatomy/chest_anatomy_start

  • Ma X, Zhao Y, Liang X-J (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44:1114–1122

    Article  CAS  Google Scholar 

  • Mondal S, Adhikari A, Das M, Darbar S, Alharbi A, Ahmed SA, Bhattacharya SS, Pal D, Pal SK (2019) Novel one pot synthesis and spectroscopic characterization of a folate-Mn3O4 nanohybrid for potential photodynamic therapeutic application. RSC Adv 9:30216–30225

    Article  CAS  Google Scholar 

  • Mondal S, Ghosh R, Adhikari A, Pal U, Mukherjee D, Biswas P, Darbar S, Singh S, Bose S, Saha-Dasgupta T (2021a) In vitro and microbiological assay of functionalized hybrid nanomaterials to validate their efficacy in nanotheranostics: a combined spectroscopic and computational study. ChemMedChem 16:3739–3749

    Article  CAS  Google Scholar 

  • Mondal S, Adhikari A, Ghosh R, Singh M, Das M, Darbar S, Bhattacharya SS, Pal D, Pal SK (2021b) Synthesis and spectroscopic characterization of a target-specific nanohybrid for redox buffering in cellular milieu. MRS Adv 6:427–433

    Article  CAS  Google Scholar 

  • Nandi R, Mishra S, Maji TK, Manna K, Kar P, Banerjee S, Dutta S, Sharma S, Lemmens P, Saha KD (2017) A novel nanohybrid for cancer theranostics: folate sensitized Fe2O3 nanoparticles for colorectal cancer diagnosis and photodynamic therapy. J Mater Chem B 5:3927–3939

    Article  CAS  Google Scholar 

  • Nguyen KT, Zhao Y (2015) Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 48:3016–3025

    Article  CAS  Google Scholar 

  • (NIBIB), N. I. o. B. I. a. B. X-rays [Online]. National Institute of Biomedical Imaging and Bioengineering (NIBIB). https://www.nibib.nih.gov/science-education/science-topics/x-rays. Accessed December 04, 2021

  • Oyedotun TDT (2018) X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geol Ecol Landsc 2:148–154

    Article  Google Scholar 

  • Pak JG, Fayazi S, White SN (2012) Prevalence of periapical radiolucency and root canal treatment: a systematic review of cross-sectional studies. J Endodont 38:1170–1176

    Article  Google Scholar 

  • Patel A, Asik D, Snyder EM, Dilillo AE, Cullen PJ, Morrow JR (2020) Binding and release of FeIII complexes from glucan particles for the delivery of T1 MRI contrast agents. ChemMedChem 15:1050–1057

    Article  CAS  Google Scholar 

  • Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Brönnimann C, Grünzweig C, David C (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137

    Article  CAS  Google Scholar 

  • Polley N, Saha S, Adhikari A, Banerjee S, Darbar S, Das S, Pal SK (2015) Safe and symptomatic medicinal use of surface-functionalized Mn3O4 nanoparticles for hyperbilirubinemia treatment in mice. Nanomedicine 10:2349–2363

    Article  CAS  Google Scholar 

  • Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 114:8499–8541

    Article  CAS  Google Scholar 

  • Qian X, Han X, Yu L, Xu T, Chen Y (2020) Manganese-based functional nanoplatforms: nanosynthetic construction, physiochemical property, and theranostic applicability. Adv Func Mater 30:1907066

    Article  CAS  Google Scholar 

  • Reineck P, Abraham AN, Poddar A, Shukla R, Abe H, Ohshima T, Gibson BC, Dekiwadia C, Conesa JJ, Pereiro E (2021) Multimodal imaging and soft X-ray tomography of fluorescent nanodiamonds in cancer cells. Biotechnol J 16:2000289

    Article  CAS  Google Scholar 

  • Rhinehart D (1931) Air and gas in the soft tissues: a radiologic study. Radiology 17:1158–1170

    Article  Google Scholar 

  • Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z (2017) Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11:10992–11004

    Article  CAS  Google Scholar 

  • Sies H (2020) Oxidative eustress and oxidative distress: introductory remarks. Oxidative Stress. Elsevier, Amsterdam, pp 3–12

    Chapter  Google Scholar 

  • Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MD thanks University Grants Commission (UGC), Govt. of India for Junior Research Fellowship. SKP thanks the Indian National Academy of Engineering (INAE) for the Abdul Kalam Technology Innovation National Fellowship, INAE/121/AKF. The authors thank the DBT (WB)-BOOST scheme for the financial grant, 339/WBBDC/1P-2/2013. The authors would like to thank Dr. Uttam Pal for hel** in graphical abstract preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Ethics declarations

Conflict of interest

The authors disclose no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Das, M., Ghosh, R. et al. Organ-specific therapeutic nanoparticles generates radiolucent reactive species for potential nanotheranostics using conventional X-ray technique in mammals. Appl Nanosci 12, 3851–3858 (2022). https://doi.org/10.1007/s13204-022-02630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02630-3

Keywords

Navigation