Log in

Energy band regulation and heterophase surface heterojunction in B-C-N-TiO2 catalysts for enhanced photocatalytic activity

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

B-C-N-TiO2 catalysts with intermediate band gap and heterojunction were prepared by sol–gel method. The crystal structure, elemental composition, and absorbance performance were analyzed by XRD, XPS and UV–vis DRS. Due to the formation of the continuous intermediate band gap in the forbidden band, the optical absorption boundary of B-C-N-TiO2 catalyst extends to 412 nm, which shows different red shift compared with that of TiO2 (397 nm), N-TiO2 (400 nm), B-TiO2 (402 nm) and C-TiO2 (403 nm).Meanwhile, the B-C-N-TiO2 catalyst is a uniform spherical solid particle with exposed (101) and (211) planes. The degradation efficiency of B-C-N-TiO2 catalyst to methylene blue(MB) was up to 97.82% after 3 h under visible light, which shows different degree of improvement compared with that of TiO2 (34.8%), N-TiO2 (79.09%), B-TiO2 (87.82%) and C-TiO2 (73.19%). B-C-N-TiO2 has good stability, and there was still more than 95% degradation efficiency after three degradation cycles. It is also revealed that the incorporation of B-C-N element affects the crystal phase of the catalyst and promotes the generation of heterophase surface heterojunction between (101) and (211). It has certain guiding value for co-do** modification of three elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig.8
Fig.9
Fig.10

Similar content being viewed by others

References

  • An X, Hu C, Liu H, Qu J (2017) Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution[J]. J Mater Chem A 5(47):24989–24994

    CAS  Google Scholar 

  • An X, Hu C, Liu H, Qu J (2018) Hierarchical nanotubular anatase/rutile/TiO2(B) heterophase junction with oxygen vacancies for enhanced photocatalytic H2 production[J]. Langmuir 34(5):1883–1889

    CAS  Google Scholar 

  • Azeez F, Al-Hetlani E, Arafa M, Abdelmonem Y, Nazeer AA, Amin MO, Madkour M (2018) The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep 8

  • Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Scinence 331:746–750

    CAS  Google Scholar 

  • Dinh CT, Yen H, Kleitz F, Do TO (2014) Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. Angew Chem Int Ed 53:6618–6623

    CAS  Google Scholar 

  • Di Valentin C, Pacchioni G (2013) Trends in non-metal do** of anatase TiO2: B, C N and F. Catal Today 206:12–18

    Google Scholar 

  • Eom JY, Lim SJ, Lee SM, Ryu WH, Kwon HS (2015) Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. J Mater Chem A 3:11183–11188

    CAS  Google Scholar 

  • Han T, Fan TX, Chow SK, Zhang D (2010) Biogenic N-P-codoped TiO2: Synthesis, characterization and photocatalytic properties. Biores Technol 101:6829–6835

    CAS  Google Scholar 

  • Huo JC, Hu YJ, Jiang H, Li CZ (2014) In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity. Nanoscale 6:9078–9084

    CAS  Google Scholar 

  • Hu J, Zhang S, Cao Y, Wang H, Yu H, Peng F (2018) Novel highly active anatase/rutile TiO2 photocatalyst with hydrogenated heterophase interface structures for photoelectrochemical water splitting into hydrogen[J]. ACS Sustain Chem Eng 6(8):10823–10832

    CAS  Google Scholar 

  • Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70

    CAS  Google Scholar 

  • Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mater 22:2050–2060

    CAS  Google Scholar 

  • Leshuk T, Parviz R, Everett P, Krishnakumar H, Varin RA, Gu F (2013) Photocatalytic activity of hydrogenated TiO2. ACS Appl Mater Interfaces 5:1892–1895

    CAS  Google Scholar 

  • Lin YT, Weng CH, Lin YH, Shiesh CC, Chen FY (2013) Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Sep Purif Technol 116:114–123

    CAS  Google Scholar 

  • Liu JM, Zhang QC, Yang JC, Ma HY, Tade MO, Wang SB, Liu J (2014a) Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem Commun 50:13971–13974

    CAS  Google Scholar 

  • Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng HM (2014b) Titanium dioxide crystals with tailored facets[J]. Chem Rev 114(19):9559–9612

    CAS  Google Scholar 

  • Liu N, Haublein V, Zhou XM, Venkatesan U, Hartmann M, Mackovic M, Nakajima T, Spiecker E, Osvet A, Frey L (2015) "Black" TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett 15:6815–6820

    CAS  Google Scholar 

  • Liu XF, **ng ZP, Zhang Y, Li ZZ, Wu XY, Tan SY, Yu XJ, Zhu Q, Zhou W (2017a) Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl Catal B 201:119–127

    CAS  Google Scholar 

  • Liu DA, Zhang MW, **e WJ, Sun L, Chen Y, Lei WW (2017b) Porous BN/TiO2 hybrid nanosheets as highly efficient visible-light-driven photocatalysts. Appl Catal 207:72–78

    CAS  Google Scholar 

  • Li L, **ao JY, Yang XC, Zhang WM, Zhang HY, Li XW (2015) High efficiency CdS quantum-dot-sensitized solar cells with boron and nitrogen co-doped TiO2 nanofilm as effective photoanode. Electrochim Acta 169:103–108

    CAS  Google Scholar 

  • Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts[J]. Adv Mater 29(20):1601694

    Google Scholar 

  • Martins NCT, Angelo J, Girao AV, Trindade T, Andrade L, Mendes A (2016) N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. 193:67–74

  • Nadeem MA, Idriss H (2018) Photo-thermal reactions of ethanol over Ag/TiO2 catalysts. The role of silver plasmon resonance in the reaction kinetics. Chem Commun 54:5197–5200

    CAS  Google Scholar 

  • Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR (2014) Highly reactive facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale. 6:1946–2008

    CAS  Google Scholar 

  • Qian W, Greaney PA, Fowler S, Chiu SK, Goforth AM, Jiao J (2014) Low-temperature nitrogen do** in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment. ACS Sustain Chem Eng 2:1802–1810

    CAS  Google Scholar 

  • Qi KZ, Liu SY, Chen Y, **a BS, Li GD (2018) A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells. Sol Energy Mater Sol Cells 183:193–199

    CAS  Google Scholar 

  • Ranjit KT, Viswanathan B (1997) Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts[J]. J Photochem Photobiol 108:79–84

    CAS  Google Scholar 

  • Ren R, Wen ZH, Cui SM, Hou Y, Guo XR, Chen JH (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5

  • Sambandam B, Surenjan A, Philip L, Pradeep T (2015) Rapid synthesis of C-TiO2: tuning the shape from spherical to rice grain morphology for visible light photocatalytic application. 3:1321–1329

  • Samsudin EM, Abd Hamid SB, Juan JC, Basirun WJ, Centi G (2015) Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by do** with N F. Chem Eng J 280:330–343

    CAS  Google Scholar 

  • Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Cooper AI (2016) Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew Chem Int Ed 55:1824–1828

    Google Scholar 

  • Trevisan V, Olivo A, Pinna F, Signoretto M, Vindigni F, Cerrato G, Bianchi CL (2014) C-N/TiO2 photocatalysts: Effect of co-do** on the catalytic performance under visible light. Appl Catal 160:152–160

    Google Scholar 

  • Ullah S, Ferreira-Neto EP, Pasa AA, Alcantara CCJ, Acuna JJS, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues UP (2015) Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. 179:333–343

  • Vargas DXM, De la Rosa JR, Lucio-Ortiz CJ, Hernandez-Ramirez A, Flores-Escamilla GA, Garcia CD (2015) Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol-gel synthesis. Appl Catal B 179:249–261

    Google Scholar 

  • Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environm Sci Technol 29:841–845

    CAS  Google Scholar 

  • Wang SL, Li J, Wang SJ, Wu J, Wong TI, Foo ML, Chen W, Wu K, Xu, GQ (2017) Two-dimensional C/TiO2 heterogeneous hybrid for noble-metal-free hydrogen evolution. 7:6892–6900

  • Wei W, Yu C, Zhao QF, Qian XF, Li GS, Wan Y (2014) Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst. Appl Catal 146:151–161

    CAS  Google Scholar 

  • Weng XL, Zeng QS, Zhang YL, Dong F, Wu ZB (2016) Facile approach for the syntheses of ultrafine TiO2 nanocrystallites with defects and C heterojunction for photocatalytic water splitting. ACS Sustain Chem Eng 4:4314–4320

    CAS  Google Scholar 

  • **ng ZP, Zhou W, Du F, Qu Y, Tian GH, Pan K, Tian CG, Fu HG (2014a) A floating macro/mesoporous crystalline anatase TiO2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Trans 43:790–798

    CAS  Google Scholar 

  • **ng ZP, Zhou W, Du F, Zhang LL, Lu ZZ, Zhang H, Li W (2014b) Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. ACS Appl Mater Interfaces 6:16653–16660

    CAS  Google Scholar 

  • Xue HB, Jiang Y, Yuan KC, Yang TT, Hou JH, Cao CB, Feng K, Wang XZ (2015) Floating photocatalyst of B-N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity. Sci Rep 5(52):41385–41392

    Google Scholar 

  • Yan X, **ng ZP, Cao Y, Hu MQ, Li ZZ, Wu XY, Zhu Q, Yang SL, Zhou W (2017a) In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001 facets as efficient visible-light-driven photocatalysts [J]. Appl Cataly 219:572–579

    CAS  Google Scholar 

  • Yan TJ, Tian J, Guan WF, Qiao Z, Li WJ, You JM, Huang BB (2017b) Ultra-low loading of Ag3PO4 on hierarchical In2S3 microspheres to improve the photocatalytic performance: The cocatalytic effect of Ag and Ag3PO4. Appl Catal B 202:84–94

    CAS  Google Scholar 

  • Yuan WJ, Li JC, Wang LK, Chen P, **e AJ, Shen YH (2014) Nanocomposite of N-doped TiO2 nanorods and graphene as an effective electrocatalyst for the oxygen reduction reaction. ACS Appl Mater Interfaces 6:21978–21985

    CAS  Google Scholar 

  • Yu JG, Low JX, **ao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by Co-exposed 001 and 101 facets[J]. J Am Chem Soc 136(25):8839–8842

    CAS  Google Scholar 

  • Yu X, Wang LF, Zhang J, Guo WB, Zhao ZH, Qin Y, Mou XN, Li AX, Liu H (2015) Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance. J Mater Chem A. 3:19129–19136

    CAS  Google Scholar 

  • Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    CAS  Google Scholar 

  • Zhang YQ, Fu Q, Xu QL, Yan X, Zhang RY, Guo ZD, Du F, Wei YJ, Zhang D, Chen G (2015) Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries. Nanoscale 7:12215–12224

    CAS  Google Scholar 

  • Zhang KF, Zhou W, Chi LN, Zhang XC, Hu WY, Jiang BJ, Pan K, Tian GH, Jiang Z (2016) Black N/H-TiO2 nanoplates with a flower-like hierarchical architecture for photocatalytic hydrogen evolution. Chemsuschem 9:2841–2848

    CAS  Google Scholar 

  • Zhang Y, Ding ZY, Foster CW, Banks CE, Qiu XQ, Ji XB (2017) Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Func Mater 27:1700856

    Google Scholar 

  • Zhou W, Fu HG (2013) Mesoporous TiO2: preparation, do**, and as a composite for photocatalysis. Chemcatchem 5:885–894

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 21276132) and the Key Research and Development Program in Shandong Province(public welfare science and technology research project) (2019GSF109038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Pan, P., Xue, K. et al. Energy band regulation and heterophase surface heterojunction in B-C-N-TiO2 catalysts for enhanced photocatalytic activity. Appl Nanosci 10, 4415–4426 (2020). https://doi.org/10.1007/s13204-020-01493-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01493-w

Keywords

Navigation