Log in

Wild herbivorous mammals (genus Neotoma) host a diverse but transient assemblage of fungi

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Fungi are often overlooked in microbiome research and, as a result, little is known about the mammalian mycobiome. Although frequently detected in vertebrate guts and known to contribute to digestion in some herbivores, whether these eukaryotes are a persistent part of the mammalian gut microbiome remains contentious. To address this question, we sampled fungi from wild woodrats (Neotoma spp.) collected from 25 populations across the southwestern United States. For each animal, we collected a fecal sample in the wild, and then re-sampled the same individual after a month in captivity on a controlled diet. We characterized and quantified fungi using three techniques: ITS metabarcoding, shotgun metagenomics and qPCR. Wild individuals contained diverse fungal assemblages dominated by plant pathogens, widespread molds, and coprophilous taxa primarily in Ascomycota and Mucoromycota. Fungal abundance, diversity and composition differed between individuals, and was primarily influenced by animal geographic origin. Fungal abundance and diversity significantly declined in captivity, indicating that most fungi in wild hosts came from diet and environmental exposure. While this suggests that these mammals lack a persistent gut mycobiome, natural fungal exposure may still impact fungal dispersal and animal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and code availability

Sequencing data can be found on the SRA under BioProjects PRJNA824056 and PRJNA722312. Code is available on GitHub at https://github.com/SBWeinstein/Neotoma_fungi.

References

  • Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2020) UNITE QIIME release for Fungi. UNITE Community. https://doi.org/10.15156/BIO/786385

  • Ahmed SA, Hofmüller W, Seibold M, de Hoog GS, Harak H, Tammer I, van Diepeningen AD, Behrens-Baumann W (2017) Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses 60:244–253. https://doi.org/10.1111/myc.12588

    Article  CAS  PubMed  Google Scholar 

  • Auchtung TA, Fofanova TY, Stewart CJ, Nash AK, Wong MC, Gesell JR, Auchtung JM, Ajami NJ et al (2018) Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3:e00092–e00018. https://doi.org/10.1128/mSphere.00092-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P et al (2019) Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176:1340–1355. https://doi.org/e1315.10.1016/j.cell.2019.01.041

  • Barelli C, Albanese D, Stumpf RM, Asangba A, Donati C, Rovero F, Hauffe HC, Sharpton TJ (2020) The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems 5:e00061–e00020. https://doi.org/10.1128/mSystems.00061-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauchop T (1979) The rumen anaerobic fungi: Colonizers of plant fibre. Ann Rech Vet 10:246–248

    CAS  PubMed  Google Scholar 

  • Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. J Antibiot 31:1099–1101. https://doi.org/10.7164/antibiotics.31.1099

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

  • Boots B, Lillis L, Clipson N, Petrie K, Kenny DA, Boland TM, Doyle E (2013) Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet. J Appl Microbiol 114:626–635. https://doi.org/10.1111/jam.12067

  • Boutin RCT, Sbihi H, McLaughlin RJ, Hahn AS, Konwar KM, Loo RS, Dai D, Petersen C et al (2021) Composition and associations of the infant gut fungal microbiota with environmental factors and childhood allergic outcomes. mBio 12:e03396–e03320. https://doi.org/10.1128/mBio.03396-20

    Article  PubMed Central  Google Scholar 

  • Bradshaw AJ, Autumn KC, Rickart EA, Dentinger BTM (2022) On the origin of feces: Fungal diversity, distribution, and conservation implications from feces of small mammals. Environ DNA 00:1–19. https://doi.org/10.1002/edn3.281

    Article  Google Scholar 

  • Braga MP, Razzolini E, Boeger WA (2015) Drivers of parasite sharing among Neotropical freshwater fishes. J Anim Ecol 84:487–497. https://doi.org/10.1111/1365-2656.12298

    Article  PubMed  Google Scholar 

  • Branstetter MG, Ješovnik A, Sosa-Calvo J, Lloyd MW, Faircloth BC, Brady SG, Schultz TR (2017) Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proc R Soc Lond B Biol Sci 284:20170095. https://doi.org/10.1098/rspb.2017.0095

    Article  Google Scholar 

  • Brown AE, Finlay R, Ward JS (1987) Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biol Biochem 19:657–664. https://doi.org/10.1016/0038-0717(87)90044-7

    Article  CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

  • Chamberlain S (2021) rnoaa: ‘NOAA’ Weather Data from R. R package version 1.3.4.https://CRAN.R-project.org/package=rnoaa

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

  • Cooper N, Griffin R, Franz M, Omotayo M, Nunn CL, Fryxell J (2012) Phylogenetic host specificity and understanding parasite sharing in primates. Ecol Lett 15:1370–1377. https://doi.org/10.1111/j.1461-0248.2012.01858.x

  • Cox MS, Deblois CL, Suen G (2021) Assessing the response of ruminal bacterial and fungal microbiota to whole-rumen contents exchange in dairy cows. Front Microbiol 12:1–17. https://doi.org/10.3389/fmicb.2021.665776

  • Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:1–12. https://doi.org/10.1186/gm467

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

  • Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front Zool 3:11. https://doi.org/10.1186/1742-9994-3-11

  • Dearing MD (1997) The manipulation of plant toxins by a food-hoarding herbivore, Ochotona princeps. Ecology 78:774–781. https://doi.org/10.2307/2266057

  • Dearing MD, Orr TJ, Greenhalgh R, Klure DM, Weinstein SB, Stapleton TE, Yamada KYH, Nelson MD et al (2022) Toxin tolerance across landscapes: Ecological exposure not a prerequisite. Funct Ecol 00:1–13. https://doi.org/10.1111/1365-2435.14093

    Article  CAS  Google Scholar 

  • Dentinger BTM (2022) Large Kraken2 database for Fungi. University of Utah, The Hive: University of Utah Research Data Repository. https://doi.org/10.7278/S50d-154b-fppf

  • Desjardin DE, Anders DA, Zak JC (1992) Marasmius inaquosi sp. nov. from Sonoran Desert woodrat middens. Mycologia 84:229–234. https://doi.org/10.2307/3760255

  • Dial KP (1988) Three sympatric species of Neotoma: dietary specialization and coexistence. Oecologia 76:531–537. https://doi.org/10.1007/BF00397865

  • Dietzel K, Valle D, Fierer N, U’Ren JM, Barberán A (2019) Geographical distribution of fungal plant pathogens in dust across the United States. Front Ecol Evol 7:1–8. https://doi.org/10.3389/fevo.2019.00304

  • Dollive S, Chen Y-Y, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, Cuff C, Lewis JD et al (2013) Fungi of the murine gut: Episodic variation and proliferation during antibiotic treatment. PLoS One 8:e71806. https://doi.org/10.1371/journal.pone.0071806

  • Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S et al (2017) PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01657

  • Fiers WD, Gao IH, Iliev ID (2019) Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr Opin Microbiol 50:79–86. https://doi.org/10.1016/j.mib.2019.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947

  • Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC (2019) A fungal world: Could the gut mycobiome be involved in neurological disease? Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.03249

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:19. https://doi.org/10.18637/jss.v022.i07

  • Greenhalgh R, Holding ML, Orr TJ, Henderson JB, Parchman TL, Matocq MD, Shapiro MD, Dearing MD (2022) Trio-binned genomes of the woodrats Neotoma bryanti and Neotoma lepida reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes. Mol Ecol Resour In Press. https://doi.org/10.1111/1755-0998.13650

    Article  Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW et al (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17. https://doi.org/10.1111/1574-6941.12383

  • Harrison XA, McDevitt AD, Dunn JC, Griffiths SM, Benvenuto C, Birtles R, Boubli JP, Bown K et al (2021) Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc R Soc Lond B Biol Sci 288:20210552. https://doi.org/10.1098/rspb.2021.0552

    Article  CAS  Google Scholar 

  • Hespell RB, Akin DE, Dehority BA (1997) Bacteria, Fungi, and Protozoa of the Rumen. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal MIcrobiology. Chapman & Hall, pp 59–141

  • Higgins KL, Arnold AE, Coley PD, Kursar TA (2014) Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–11. https://doi.org/10.1016/j.funeco.2013.12.005

    Article  Google Scholar 

  • Hijmans RJ (2019) geosphere: Spherical trigonometry. R package version 1.5–10.https://CRAN.R-project.org/package=geosphere

  • Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019. https://doi.org/10.1371/journal.pone.0066019

  • Iliev ID, Leonardi I (2017) Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol 17:635–646. https://doi.org/10.1038/nri.2017.55

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol 11:503–507. https://doi.org/10.1016/S0169-5347(96)10053-7

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Micro 3:937–947. https://doi.org/10.1038/nrmicro1286

  • Kohl KD (2020) Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci 375:20190251. https://doi.org/10.1098/rstb.2019.0251

  • Kohl KD, Dearing MD (2016) The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1–9. https://doi.org/10.3389/fmicb.2016.01165

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/aem.01043-13

  • Kurtzman CP, Robnett CJ, Ward JM, Brayton C, Gorelick P, Walsh TJ (2005) Multigene phylogenetic analysis of pathogenic candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov. J Clin Microbiol 43:101–111. https://doi.org/10.1128/JCM.43.1.101-111.2005

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

  • Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. https://CRAN.R-project.org/package=emmeans

  • Li J, Li L, Jiang H, Yuan L, Zhang L, Ma JE, Zhang X, Cheng M et al (2018) Fecal bacteriome and mycobiome in bats with diverse diets in South China. Curr Microbiol 75:1352–1361. https://doi.org/10.1007/s00284-018-1530-0

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235. https://doi.org/10.1038/ismej.2010.49

  • Liu CM, Kachur S, Dwan MG, Abraham AG, Aziz M, Hsueh P-R, Huang Y-T, Busch JD et al (2012) FungiQuant: A broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol 12:255. https://doi.org/10.1186/1471-2180-12-255

  • Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG (2019) Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol 28:721–730. https://doi.org/10.1111/mec.14995

    Article  PubMed  Google Scholar 

  • Lund A (1980) Yeasts in the rumen contents of musk oxen. J Gen Microbiol 121:273–276

    CAS  PubMed  Google Scholar 

  • Martínez-Mota R, Kohl KD, Orr TJ, Denise Dearing M (2020) Natural diets promote retention of the native gut microbiota in captive rodents. ISME J 14:67–78. https://doi.org/10.1038/s41396-019-0497-6

  • Matocq MD, Shurtliff QR, Feldman CR (2007) Phylogenetics of the woodrat genus Neotoma (Rodentia: Muridae): implications for the evolution of phenotypic variation in male external genitalia. Mol Phylogenet Evol 42:637–652. https://doi.org/10.1016/j.ympev.2006.08.011

  • McMurdie PJ, Holmes SP (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Article  CAS  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626

    Article  Google Scholar 

  • Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA et al (2017) The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5:153. https://doi.org/10.1186/s40168-017-0373-4

  • Neu AT, Allen EE, Roy K (2021) Defining and quantifying the core microbiome: Challenges and prospects. Proc Natl Acad Sci U S A 118:e2104429118. https://doi.org/10.1073/pnas.2104429118

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P (2019) and Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Micro 17:95–109. https://doi.org/10.1038/s41579-018-0116-y

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB et al (2019) vegan: Community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Micro 14:434–447. https://doi.org/10.1038/nrmicro.2016.59

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P et al (2011) Scikit-learn: Machine Learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

  • R Core Team (2020) R: A language and environment for statistical computing. R version 3.6.3.https://www.R-project.org/

  • Reid FA(2006) A field guide to mammals of North America. 4th ed. edition. Houghton Mifflin Company, New York

  • Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD(2018) ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7:1418–1418. https://doi.org/10.12688/f1000research.15704.1

  • Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG et al (2019) Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365:1–12. https://doi.org/10.1126/science.aaw4361

  • Sawaswong V, Chanchaem P, Khamwut A, Praianantathavorn K, Kemthong T, Malaivijitnond S, Payungporn S (2020) Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis). Fungal Genet Biol 144:103468. https://doi.org/10.1016/j.fgb.2020.103468

  • Schliep KP(2011) phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706

  • Seyedmousavi S, Bosco SdMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE et al(2018) Fungal infections in animals: a patchwork of different situations. Med Mycol 56:S165–S187. https://doi.org/10.1093/mmy/myx104

  • Silliman BR, Newell SY(2003) Fungal farming in a snail. Proc Natl Acad Sci U S A 100:15643–15648. https://doi.org/10.1073/pnas.2535227100

  • Skopec M, Haley S, Torregrossa A-M, Dearing MD(2008) An oak (Quercus agrifolia) specialist (Neotoma macrotis) and a sympatric generalist (Neotoma lepida) show similar intakes and digestibilities of oak. Physiol Biochem Zool 81:426–433. https://doi.org/10.1086/589106

  • Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO et al (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195. https://doi.org/10.1126/science.aad1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens RB, Rowe RJ (2020) The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology 101:e02972. https://doi.org/10.1002/ecy.2972

    Article  PubMed  Google Scholar 

  • Suhr MJ, Hallen-Adams HE(2015) The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia 107:1057–1073. https://doi.org/10.3852/15-147

  • Sun B, Gu Z, Wang X, Huffman MA, Garber PA, Sheeran LK, Zhang D, Zhu Y et al(2018) Season, age, and sex affect the fecal mycobiota of free-ranging Tibetan macaques (Macaca thibetana). Am J Primatol 80:e22880. https://doi.org/10.1002/ajp.22880

  • Sun B, **a Y, Garber PA, Amato KR, Gomez A, Xu X, Li W, Huang M et al (2021) Captivity is associated with gut mycobiome composition in Tibetan macaques (Macaca thibetana). Front Microbiol 12:665853. https://doi.org/10.3389/fmicb.2021.665853

  • Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T (2016) and Cullen D. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol 82:7217–7226. https://doi.org/10.1128/AEM.02576-16

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM et al (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, and Lindahl B (2016) Fungal identification biases in microbiome projects. Environ Microbiol Rep 8:774–779. https://doi.org/10.1111/1758-2229.12438

    Article  PubMed  Google Scholar 

  • Teunissen MJ, Op den Camp HJ, Orpin CG, Huis in ‘t Veld JH, and Vogels GD (1991) Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J Gen Microbiol 137:1401–1408. https://doi.org/10.1099/00221287-137-6-1401

  • Tirelle P, Breton J, Riou G, Déchelotte P, Coëffier M (2020) and Ribet D. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol 20:340. https://doi.org/10.1186/s12866-020-02018-9

  • van T Bernardes, Pettersen E, Gutierrez VK, Laforest-Lapointe MW, Jendzjowsky I, Cavin NG, Vicentini J-B, Keenan FA CM, et al(2020) Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 11:2577. https://doi.org/10.1038/s41467-020-16431-1

  • Vaughan TA (1990) Ecology of living packrats. In: Betancourt JL, Van Devender TR, Martin PS (eds) Packrat Middens. University of Arizona Press, Tucson, pp 14–27

    Google Scholar 

  • Venables W, Ripley B(2002) Modern Applied Statistics with S. 4th edition. Springer, New York, NY

  • Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE, Zhaxybayeva O (2019) Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4:e00247–e00219. https://doi.org/10.1128/mSystems.00247-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinstein SB, Martínez-Mota R, Stapleton TE, Klure DM, Greenhalgh R, Orr TJ, Dale C, Kohl KD et al (2021) Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (Neotoma spp.). Proc Natl Acad Sci U S A 118:e2108787118. https://doi.org/10.1073/pnas.2108787118

  • Whitford WG, Steinberger Y (2010) Pack rats (Neotoma spp.): Keystone ecological engineers? J Arid Environ 74:1450–1455. https://doi.org/10.1016/j.jaridenv.2010.05.025

    Article  Google Scholar 

  • Wood DE, Lu J, Langmead B(2019) Improved metagenomic analysis with Kraken 2. Genome Biol 20:257. https://doi.org/10.1186/s13059-019-1891-0

  • Ye SH, Siddle KJ, Park DJ, Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–794. https://doi.org/10.1016/j.cell.2019.07.010

  • Yeung F, Chen Y-H, Lin J-D, Leung JM, McCauley C, Devlin JC, Hansen C, Cronkite A et al (2020) Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27:809–822.e806. https://doi.org/10.1016/j.chom.2020.02.015

  • Zak J, Whitford W (1988) Interactions among soil biota in desert ecosystems. Agric Ecosyst Environ 24:87–100. https://doi.org/10.1016/0167-8809(88)90058-8

    Article  Google Scholar 

  • Zhang J, Shi H, Wang Y, Li S, Cao Z, Ji S, He Y, Zhang H(2017) Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in holstein heifers. Front Microbiol 8:2206. https://doi.org/10.3389/fmicb.2017.02206

Download references

Acknowledgements

We thank Rodolfo Martínez-Mota, Tess E. Stapleton, Dylan M. Klure, Teri J. Orr, Kaylene Yamada, James Patton, James Malcolm, Madeline Nelson, and Margaret Doolin for assistance with sample collection and animal husbandry, and Bryn Dentinger and Alexander Bradshaw for discussions on fungal ecology and access to reference databases.

Funding

Support was provided by NSF Dimensions DEB 1342615, NSF IOS 1656497, and Ruth L. Kirschstein National Research Service Award NIH T32AI055434. ITS amplicon sequencing was performed at the University of Utah’s High-Throughput Genomics facility which is supported by NIH award number P30CA042014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara B. Weinstein.

Ethics declarations

Ethics approval

Animal use was approved by the University of Utah IACUC (16-02011) and conducted under permits from CA (SC-8123), UT (1COLL5194-1,2), NV (333663), and AZ (SP773078).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sara B. Weinstein and W. Zac Stephens are equally contributing lead authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, S.B., Stephens, W.Z., Greenhalgh, R. et al. Wild herbivorous mammals (genus Neotoma) host a diverse but transient assemblage of fungi. Symbiosis 87, 45–58 (2022). https://doi.org/10.1007/s13199-022-00853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-022-00853-0

Keywords

Navigation