Log in

Diabetes, glycemic control and arterial stiffness: a real-world cohort study in the context of predictive, preventive, and personalized medicine

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Background

Arterial stiffness is a major contributor to morbidity and mortality worldwide. Although several metabolic markers associated with arterial stiffness have been developed, there is limited data regarding whether glycemic control modifies the association between diabetes and arterial stiffness. For these reasons, identification of traits around diabetes will directly contribute to arterial stiffness and atherosclerosis management in the context of predictive, preventive, and personalized medicine (PPPM). Thus, this study aimed to explore the relationship of diabetes and glycemic control status with arterial stiffness in a real-world setting.

Methods

Data of participants from Bei**g **aotangshan Examination Center (BXEC) with at least two surveys between 2008 and 2019 were used. Cumulative hazards were presented by inverse probability of treatment weighted (IPTW) Kaplan-Meier curves. Cox models were used to estimate the hazard ratio (HR) and 95% confidence interval (CI). Arterial stiffness was defined as brachial-ankle pulse wave velocity (baPWV) ≥1400 cm/s.

Results

Of 5837 participants, the mean baseline age was 46.5±9.3 years, including 3791 (64.9%) males. During a median follow-up of 4.0 years, 1928 (33.0%) cases of incident arterial stiffness were observed. People with diabetes at baseline had a 48.4% (HR: 1.484, 95% CI: 1.250–1.761) excessive risk of arterial stiffness. Adherence to good glycemic control attenuated the relationship between diabetes and arterial stiffness (HR: 1.264, 95% CI: 0.950–1.681); while uncontrolled diabetes was associated with the highest risk of arterial stiffness (HR: 1.629, 95% CI: 1.323–2.005). Results were consistent using IPTW algorithm and multiple imputed data.

Conclusion

Our study quantified that diabetes status is closely associated with an increased risk of arterial stiffness and supported that adherence to good glycemic control could attenuate the adverse effect of diabetes on arterial stiffness. Therefore, glucose monitoring and control is a cost-effective strategy for the predictive diagnostics, targeted prevention, patient stratification, and personalization of medical services in early vascular damages and arterial stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PPPM:

Predictive preventive personalized medicine

baPWV:

Brachial-ankle pulse wave velocity

IPTW:

Inverse probability of treatment weighted

BXEC:

Bei**g **aotangshan Examination Center

BMI:

Body mass index

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

MAP:

Mean arterial pressure

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

eGFR:

Estimated glomerular filtration rate

SD:

Standard deviation

IQR:

Interquartile range

cfPWV:

Carotid femoral pulse wave velocity

OGTT:

Oral glucose tolerance test

References

  1. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial stiffness and cardiovascular risk in hypertension. Circ Res. 2021;128(7):864–86.

    PubMed  CAS  Google Scholar 

  2. Agbaje AO. Arterial stiffness precedes hypertension and metabolic risks in youth: a review. J Hypertens. 2022;40(10):1887–96.

    PubMed  CAS  Google Scholar 

  3. Yasuno S, Ueshima K, Oba K, Fujimoto A, Hirata M, Ogihara T, Saruta T, Nakao K. Is pulse pressure a predictor of new-onset diabetes in high-risk hypertensive patients?: a subanalysis of the Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J) trial. Diabetes Care. 2010;33(5):1122–7.

    PubMed  PubMed Central  Google Scholar 

  4. Muhammad IF, Borné Y, Östling G, Kennbäck C, Gottsäter M, Persson M, Nilsson PM, Engström G. Arterial stiffness and incidence of diabetes: a population-based cohort study. Diabetes Care. 2017;40(12):1739–45.

    PubMed  CAS  Google Scholar 

  5. Zheng M, Zhang X, Chen S, Song Y, Zhao Q, Gao X, Wu S. Arterial Stiffness Preceding Diabetes: A Longitudinal Study. Circ Res. 2020;127(12):1491–8.

    PubMed  CAS  Google Scholar 

  6. Wu Y, Han X, Gao J, Wang Y, Zhu C, Huang Z, **ng A, Chen S, Ma Y, Zheng M, et al. Individual and combined contributions of age-specific and sex-specific pulse pressure and brachial-ankle pulse wave velocity to the risk of new-onset diabetes mellitus. BMJ Open Diabetes Res Care. 2021;9(1):e001942. https://doi.org/10.1136/bmjdrc-2020-001942.

  7. Zhang Y, He P, Li Y, Zhang Y, Li J, Liang M, Wang G, Tang G, Song Y, Wang B, et al. Positive association between baseline brachial-ankle pulse wave velocity and the risk of new-onset diabetes in hypertensive patients. Cardiovasc Diabetol. 2019;18(1):111.

    PubMed  PubMed Central  Google Scholar 

  8. Cohen JB, Mitchell GF, Gill D, Burgess S, Rahman M, Hanff T, Ramachandran VS, Mutalik K, Townsend RR, Chirinos JA. Arterial stiffness and diabetes risk in Framingham Heart Study and UK Biobank. Circ Res. 2022;131(6):545–554. https://doi.org/10.1161/CIRCRESAHA.122.320796.

  9. Tian X, Zuo Y, Chen S, Zhang Y, Zhang X, Xu Q, Wu S, Wang A. Hypertension, arterial stiffness, and diabetes: a prospective cohort study. Hypertension. 2022;79(7):1487–96.

    PubMed  CAS  Google Scholar 

  10. Lou YM, Liao MQ, Wang CY, Chen HE, Peng XL, Zhao D, Gao XP, Xu S, Wang L, Ma JP, et al. Association between brachial-ankle pulse wave velocity and risk of type 2 diabetes mellitus: results from a cohort study. BMJ Open Diabetes Res Care. 2020;8(1):e001317. https://doi.org/10.1136/bmjdrc-2020-001317.

  11. Wang M, Huang J, Wu T, Qi L. Arterial stiffness, genetic risk, and type 2 diabetes: a prospective cohort study. Diabetes Care. 2022;45(4):957–64.

    PubMed  CAS  Google Scholar 

  12. Weber T. Arterial Stiffness, wave reflections, and diabetes: a bidirectional relationship? Am J Hypertens. 2010;23(10):1047–8.

    PubMed  Google Scholar 

  13. Xu M, Huang Y, **e L, Peng K, Ding L, Lin L, Wang P, Hao M, Chen Y, Sun Y, et al. Diabetes and risk of arterial stiffness: a mendelian randomization analysis. Diabetes. 2016;65(6):1731–40.

    PubMed  CAS  Google Scholar 

  14. Han Z, Kang X, Zhang J, Wang J, Liu Y, Liu J, Wu Z, Li X, Zhao X, Guo X, et al. Glycated hemoglobin and risk of arterial stiffness in a chinese han population: a longitudinal study. Front Endocrinol (Lausanne). 2022;13:854875.

    PubMed  Google Scholar 

  15. Wu Z, Zhou D, Liu Y, Li Z, Wang J, Han Z, Miao X, Liu X, Li X, Wang W, et al. Association of TyG index and TG/HDL-C ratio with arterial stiffness progression in a non-normotensive population. Cardiovasc Diabetol. 2021;20(1):134.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Nakano H, Shiina K, Takahashi T, Fujii M, Iwasaki Y, Matsumoto C, Yamashina A, Chikamori T, Tomiyama H. Bidirectional Longitudinal relationships between arterial stiffness and hypertension are independent of those between arterial stiffness and diabetes: a large-scale prospective observational study in employees of a Japanese company. J Am Heart Assoc. 2022;11(13):e025924.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7(1):23.

    PubMed  PubMed Central  Google Scholar 

  18. Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalised medicine as the hardcore of 'Horizon 2020': EPMA position paper. EPMA J. 2014;5(1):6.

    PubMed  PubMed Central  Google Scholar 

  19. Wu Z, Zhang H, Li Z, Li H, Miao X, Pan H, Wang J, Liu X, Kang X, Li X, et al. Mutual effect of homocysteine and uric acid on arterial stiffness and cardiovascular risk in the context of predictive, preventive, and personalized medicine. EPMA J. 2022;13(4):581–95.

    PubMed  PubMed Central  Google Scholar 

  20. Chiavaroli L, Lee D, Ahmed A, Cheung A, Khan TA, Blanco S, Mejia MA, Jenkins DJA, Livesey G, et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ. 2021;374:n1651.

    PubMed  PubMed Central  Google Scholar 

  21. Nauck MA, D'Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21(1):169.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Balintescu A, Lind M, Franko MA, Oldner A, Cronhjort M, Svensson AM, Eliasson B, Mårtensson J. Glycemic control and risk of sepsis and subsequent mortality in type 2 diabetes. Diabetes Care. 2022;45(1):127–33.

    PubMed  Google Scholar 

  23. Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Büsselberg D, Kubatka P, Golubnitschaja O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021;12(4):477–505.

    PubMed  PubMed Central  Google Scholar 

  24. Wu Z, Wang J, Li Z, Han Z, Miao X, Liu X, Li X, Wang W, Guo X, Tao L. Triglyceride glucose index and carotid atherosclerosis incidence in the Chinese population: a prospective cohort study. Nutr Metab Cardiovasc Dis. 2021;31(7):2042–50.

    PubMed  CAS  Google Scholar 

  25. Liu J, Zhao Z, Mu Y, Zou X, Zou D, Zhang J, Chen S, Tao L, Guo X. Gender differences in the association between serum uric acid and prediabetes: a six-year longitudinal cohort study. Int J Environ Res Public Health. 2018;15(7):1560. https://doi.org/10.3390/ijerph15071560.

  26. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25(3):359–64.

    PubMed  Google Scholar 

  27. Lu YC, Lyu P, Zhu HY, Xu DX, Tahir S, Zhang HF, Zhou F, Yao WM, Gong L, Zhou YL, et al. Brachial-ankle pulse wave velocity compared with mean arterial pressure and pulse pressure in risk stratification in a Chinese population. J Hypertens. 2018;36(3):528–36.

    PubMed  CAS  Google Scholar 

  28. Sun D, Liu Y, Zhang J, Liu J, Wu Z, Liu M, Li X, Guo X, Tao L. Long-term effects of fine particulate matter exposure on the progression of arterial stiffness. Environ Health. 2021;20(1):2.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Yamashina A, Tomiyama H, Arai T, Hirose K, Koji Y, Hirayama Y, Yamamoto Y, Hori S. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens Res. 2003;26(8):615–22.

    PubMed  Google Scholar 

  30. Munakata M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr Hypertens Rev. 2014;10(1):49–57.

    PubMed  Google Scholar 

  31. Standards of Medical Care in Diabetes-2020. Abridged for Primary Care Providers. Clin Diabetes. 2020;38(1):10–38.

    Google Scholar 

  32. Chen C, Lu FC. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed Environ Sci. 2004;17(Suppl):1–36.

    PubMed  Google Scholar 

  33. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 2003;289(19):2560–72.

    PubMed  CAS  Google Scholar 

  34. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    PubMed  PubMed Central  Google Scholar 

  35. Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo TKS, de Clerck E, Polivka J Jr, Potuznik P, Polivka J, et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023;14(1):21–42.

    PubMed  PubMed Central  Google Scholar 

  36. Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, Podbielska H, Kunin AA, Evsevyeva ME, Shapira N, et al. Caution, "normal" BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J. 2021;12(3):243–64.

    PubMed  PubMed Central  Google Scholar 

  37. Polivka J Jr, Polivka J, Pesta M, Rohan V, Celedova L, Mahajani S, Topolcan O, Golubnitschaja O. Risks associated with the stroke predisposition at young age: facts and hypotheses in light of individualized predictive and preventive approach. EPMA J. 2019;10(1):81–99.

    PubMed  PubMed Central  Google Scholar 

  38. Golubnitschaja O. Feeling cold and other underestimated symptoms in breast cancer: anecdotes or individual profiles for advanced patient stratification? EPMA J. 2017;8(1):17–22.

    PubMed  PubMed Central  Google Scholar 

  39. Schram MT, Henry RM, van Dijk RA, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, Bouter LM, Westerhof N, Stehouwer CD. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension. 2004;43(2):176–81.

    PubMed  CAS  Google Scholar 

  40. Loehr LR, Meyer ML, Poon AK, Selvin E, Palta P, Tanaka H, Pankow JS, Wright JD, Griswold ME, Wagenknecht LE, et al. Prediabetes and diabetes are associated with arterial stiffness in older adults: The ARIC Study. Am J Hypertens. 2016;29(9):1038–45.

    PubMed  PubMed Central  Google Scholar 

  41. Prenner SB, Chirinos JA. Arterial stiffness in diabetes mellitus. Atherosclerosis. 2015;238(2):370–9.

    PubMed  CAS  Google Scholar 

  42. Shin JY, Lee HR, Lee DC. Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovasc Diabetol. 2011;10:30.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Henry RM, Kostense PJ, Spijkerman AM, Dekker JM, Nijpels G, Heine RJ, Kamp O, Westerhof N, Bouter LM, Stehouwer CD. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation. 2003;107(16):2089–95.

    PubMed  Google Scholar 

  44. Elias MF, Crichton GE, Dearborn PJ, Robbins MA, Abhayaratna WP. Associations between type 2 diabetes mellitus and arterial stiffness: a prospective analysis based on the maine-syracuse study. Pulse (Basel). 2018;5(1-4):88–98.

    PubMed  Google Scholar 

  45. Terentes-Printzios D, Vlachopoulos C, Xaplanteris P, Ioakeimidis N, Aznaouridis K, Baou K, Kardara D, Georgiopoulos G, Georgakopoulos C, Tousoulis D. Cardiovascular risk factors accelerate progression of vascular aging in the general population: results from the CRAVE Study (Cardiovascular Risk Factors Affecting Vascular Age). Hypertension. 2017;70(5):1057–64.

    PubMed  CAS  Google Scholar 

  46. de Oliveira AR, Santos P, Musso MM, de Sá CR, Krieger JE, Mill JG, Pereira AC. Impact of diabetes mellitus on arterial stiffness in a representative sample of an urban Brazilian population. Diabetol Metab Syndr. 2013;5(1):45.

    Google Scholar 

  47. Giraldo-Grueso M, Echeverri D. From Endothelial Dysfunction to Arterial Stiffness in Diabetes Mellitus. Curr Diabetes Rev. 2020;16(3):230–7.

    PubMed  Google Scholar 

  48. Jain S, Khera R, Corrales-Medina VF, Townsend RR, Chirinos JA. Inflammation and arterial stiffness in humans. Atherosclerosis. 2014;237(2):381–90.

    PubMed  CAS  Google Scholar 

  49. Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21(1):3–12.

    PubMed  CAS  Google Scholar 

Download references

Funding

Our work was funded by the National Natural Science Foundation of China (82072911).

Author information

Authors and Affiliations

Authors

Contributions

Literature search: T. Zhang, YT. Qi; Study conception and design: JQ. Chu, HK. Xu; Data collection: C. Sun and XP. Kang; Data analysis and interpretation: ZM. Zhang, XG. Wang; Manuscript writing and reviewing: CC. Cui, SQ. Yue; Study supervision: L. Fang.

Corresponding author

Correspondence to Ling Fang.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committees of **aotangshan Hospital. All participants gave informed consent to participate before taking part.

Consent to publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhang, T., Qi, Y. et al. Diabetes, glycemic control and arterial stiffness: a real-world cohort study in the context of predictive, preventive, and personalized medicine. EPMA Journal 14, 663–672 (2023). https://doi.org/10.1007/s13167-023-00347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-023-00347-z

Keywords

Navigation