Log in

Torrential rainfall responses to radiation and ice clouds over Jiang-Huai Valley, China in July 2007

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The effects of radiation and ice clouds on a torrential rainfall event of Jiang-Huai Valley over China are investigated through a series of two-dimensional sensitivity cloud-resolving model experiments. The model is integrated with an imposed large-scale vertical velocity and zonal wind constructed from the National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS) from 2 to 9 July 2007, while the control experiment is compared with two sensitivity experiments that exclude radiation and ice clouds, respectively. The exclusion of ice clouds decreases model domain mean surface rain rate through the weakened mean net condensation and the mean hydrometeor change from loss to gain during the life span of the rainfall event. The sensitivity of the mean rain rate to radiation occurs only in the later period of the rainfall event and is less than that to ice clouds. The reduction in the mean rain rate caused by the elimination of radiation is associated with the decreases in the mean net condensation and latent heat, which corresponds to the strengthened mean local atmospheric cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo. 104606, Vol. 3, 85pp. [Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771]

  • ____, D. P. Kratz, and W. Ridgway, 1991: Infrared radiation parameterization in numerical climate models. J. Climate, 4, 424–437.

    Article  Google Scholar 

  • ____, M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1998: Parameterizations for cloud overlap** and shortwave single scattering properties for use in general circulation and cloud ensemble models. J. Atmos. Sci., 55, 201–214.

    Google Scholar 

  • Cui, X., and X. Li, 2006: Role of surface evaporation in surface rainfall processes. J. Geophys. Res. 111, D17112, doi:10.1029/2005JD006876.

    Article  Google Scholar 

  • Ding, Y., and T. Zhu, 1993: A dynamic analysis and numerical study of the explosive development of a cyclone over land. Sci. Chin. B, 23, 1226–1232.

    Google Scholar 

  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 1310–1328.

    Article  Google Scholar 

  • Gao, S., and X. Li, 2008a: Cloud-resolving modeling of convective processes. Springer, Dordrecht, 206 pp.

    Book  Google Scholar 

  • ____, and _____, 2008b: Responses of tropical deep convective precipitation systems and their associated convective and stratiform regions to the large-scale forcing. Quart. J. Roy. Meteor. Soc., 134, 2127–2141.

    Article  Google Scholar 

  • ____, X. Cui, Y. Zhou, and X. Li, 2005: Surface rainfall processes as simulated in a cloud resolving model. J. Geophys. Res., 110, D10202, doi: 10.1029/2004JD005467.

    Article  Google Scholar 

  • ____, L. Ran, and X. Li, 2006: Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: A 2D cloud-resolving modeling study. Mon. Wea. Rev., 134, 3015–3024.

    Article  Google Scholar 

  • ____, T. Lei, and Y. Zhou, 2002: Moist potential vorticity anomaly with heat and mass forcings in torrential rain system. Chin. Phys. Lett., 19, 878–880.

    Article  Google Scholar 

  • Grabowski, W. W., 2001: Cloud microphysics and the tropical climate: Cloud-resolving model perspective. J. Climate, 13, 2306–2322.

    Article  Google Scholar 

  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281–287.

    Article  Google Scholar 

  • Li, X., C.-H. Sui, K.-M. Lau, and M.-D. Chou, 1999: Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028–3042.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice -phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 985–1004.

    Article  Google Scholar 

  • **, F., Z. Luo, and X. Li, 2007: Microphysical and radiative effects of ice microphysics on tropical equilibrium states: A two-dimensional cloud-resolving modeling study. Mon. Wea. Rev., 135, 2794–2802.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warmfrontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Article  Google Scholar 

  • ____, and _____, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A disgnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.

    Article  Google Scholar 

  • Shen, X., Y. Wang, and X. Li, 2011a: Radiative effects of water clouds on rainfall responses to the large-scale forcing during pre-summer heavy rainfall over southern China. Atmos. Res., 99,120–128.

    Article  Google Scholar 

  • ____, _____, and _____, 2011b: Effects of vertical wind shear and cloud radiatve processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Quart. J. Roy. Meteor. Soc., 137, 236–249.

    Article  Google Scholar 

  • Soong, S. T., and Y. Ogura, 1980: Response of tradewind cumuli to largescale processes. J. Atmos. Sci., 37, 2035–2050.

    Article  Google Scholar 

  • ____, and W. K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 2016–2034.

    Article  Google Scholar 

  • Sui, C.-H., K.-M. Lau, W.-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711–728.

    Article  Google Scholar 

  • ____, _____, Y. N. Takayabu, and D. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639–655.

    Article  Google Scholar 

  • ____, X. Li, and K.-M. Lau, 1998: Radiative-convective processes in simulated diurnal variations of tropical oceanic convection, J. Atmos. Sci., 55, 2345–2359.

    Article  Google Scholar 

  • Sun, J., and S. Zhao, 2002: A study of mesoscale convective system of torrential rainfall over southern China in June 199. I: A numerical analysis of meso-β scale convective system triggering torrential rainfall. Chin. J. Atmos. Sci., 26, 541–557.

    Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35–72.

    Google Scholar 

  • ____, _____, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231–235.

    Article  Google Scholar 

  • ____, _____, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673–690.

    Article  Google Scholar 

  • ____, S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitude. J. Atmos. Sci., 53, 2624–2651.

    Article  Google Scholar 

  • Tao, Z., W. Huang, and L. Gu, 1996: An observational study of circulation structures of mesoscale convective complex. J. Tropical Meteor., 12, 372–379.

    Google Scholar 

  • Wang, D., X. Li, W.-K. Tao, Y. Liu, and H. Zhou, 2009: Torrential rainfall processes associated with a landfall of severe tropical strom Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmos. Res. 91, 94–104.

    Article  Google Scholar 

  • ____, _____, and _____, 2010a: Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006). Atmos. Res., 98, 512–525.

    Article  Google Scholar 

  • ____, _____, and _____, 2010b: Torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006). Meteor. Atmos. Phys., 109, 115–128.

    Article  Google Scholar 

  • Wang, J.-J., X. Li, and L. Carey, 2007: Evolution, structure, cloud microphysical and surface rainfall processes of a monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360–380.

    Article  Google Scholar 

  • Wang, Y., X. Shen, and X. Li, 2010c: Microphysical and radiative effects of ice clouds on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Atmos. Res., 97, 35–46.

    Article  Google Scholar 

  • Wu, X., 2002: Effects of ice microphysics on tropical radiative-convective-oceanic quasi-equilibrium states. J. Atmos. Sci., 59, 1885–1897.

    Article  Google Scholar 

  • Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud-radiation interactions. J. Atmos. Sci., 52, 800–817.

    Article  Google Scholar 

  • Xu, X., F. Xu, and B. Li, 2007: A cloud-resolving modeling study of a torrential rainfall event over China. J. Geophys. Res., 112, D17204, doi: 10.1029/2006JD008275.

    Article  Google Scholar 

  • Yue, C., and S. Shou, 2011: Responses of precipitation to vertical wind shear, radiation, and ice clouds during the landfall of Typhoon Krosa (2007). Atmos. Res., 99, 344–352.

    Article  Google Scholar 

  • ____, _____, and X. Li, 2009: Water vapor, cloud, surface rainfall, and heat budgets associated with the landfall of Typhoon Krosa (2007): A cloud-resolving modeling study. Adv. Atmos. Sci., 26, 1198–1208.

    Article  Google Scholar 

  • Zhai, G., S. Gao, and S. Sun, 1996: A numerical study of effects of uppertropospheric circulations on lower-tropospheric jet stream and associated mesoscale system. Acta Meteor. Sin., 55, 714–725.

    Google Scholar 

  • Zhou, X., S. Zhao, and B. Zhang, 1984: A numerical study of the development of mesoscale low associated with Meiyu front. Chin. J. Atmos. Sci., 8, 353–361.

    Google Scholar 

  • Zhou, Y, 2011: Effects of vertical wind shear, radiation, and ice clouds on a torrential rainfall event over **an, China in July 2007. J. Geophys. Res., 116, D05118, doi:10.1029/2010JD01451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Xu, X., Cui, X. et al. Torrential rainfall responses to radiation and ice clouds over Jiang-Huai Valley, China in July 2007. Asia-Pacific J Atmos Sci 49, 401–407 (2013). https://doi.org/10.1007/s13143-013-0037-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0037-7

Key words

Navigation