Log in

A Review of Machine Learning Approaches for Brain Positron Emission Tomography Data Analysis

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) imaging has moved forward the development of medical diagnostics and research across various domains, including cardiology, neurology, infection detection, and oncology. The integration of machine learning (ML) algorithms into PET data analysis has further enhanced their capabilities of including disease diagnosis and classification, image segmentation, and quantitative analysis. ML algorithms empower researchers and clinicians to extract valuable insights from complex big PET datasets, which enabling automated pattern recognition, predictive health outcome modeling, and more efficient data analysis. This review explains the basic knowledge of PET imaging, statistical methods for PET image analysis, and challenges of PET data analysis. We also discussed the improvement of analysis capabilities by combining PET data with machine learning algorithms and the application of this combination in various aspects of PET image research. This review also highlights current trends and future directions in PET imaging, emphasizing the driving and critical role of machine learning and big PET image data analytics in improving diagnostic accuracy and personalized medical approaches. Integration between PET imaging will shape the future of medical diagnosis and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zainab TA-S, Al-Sharify TA, Al-Sharify NT, Naser HY. A critical review on medical imaging techniques (CT and PET scans) in the medical field. IOP Conf Ser: Mater Sci Eng. 2020;870:012043.

    Google Scholar 

  2. Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng. 2015;17:385–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Townsend DW, Carney JP, Yap JT, Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45(Suppl 1):4S-14S.

    PubMed  Google Scholar 

  4. Kitson SL, Cuccurullo V, Ciarmiello A, Salvo D, Mansi L. Clinical applications of positron emission tomography (PET) imaging in medicine: oncology, brain diseases and cardiology. Curr Radiopharm. 2009;2:224–53.

    Article  CAS  Google Scholar 

  5. Sepehrizadeh T, Jong I, DeVeer M, Malhotra A. PET/MRI in paediatric disease. Eur J Radiol. 2021;144: 109987.

    Article  PubMed  Google Scholar 

  6. Anand SS, Singh H, Dash AK. Clinical applications of PET and PET-CT. Med J Armed Forces India. 2009;65:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slomka P, Berman DS, Alexanderson E, Germano G. The role of PET quantification in cardiovascular imaging. Clin Transl Imaging. 2014;2:343–58.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kazakauskaite E, Zaliaduonyte-Peksiene D, Rumbinaite E, Kersulis J, Kulakiene I, Jurkevicius R. Positron emission tomography in the diagnosis and management of coronary artery disease. Medicina (Kaunas). 2018;54:47.

    Article  PubMed  Google Scholar 

  9. Santos BS, Ferreira MJ. Positron emission tomography in ischemic heart disease. Rev Port Cardiol (Engl Ed). 2019;38:599–608.

    Article  PubMed  Google Scholar 

  10. Tai YF, Piccini P. Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry. 2004;75:669–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pijl JP, Kwee TC, Slart R, Glaudemans A. PET/CT imaging for personalized management of infectious diseases. J Pers Med. 2021;11:133.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fahim Ul H, Cook GJ. PET/CT in oncology. Clin Med (Lond). 2012;12:368–72.

    Google Scholar 

  13. Saif MW, Tzannou I, Makrilia N, Syrigos K. Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med. 2010;83:53–65.

    PubMed  PubMed Central  Google Scholar 

  14. Duffy IR, Boyle AJ, Vasdev N. Improving PET imaging acquisition and analysis with machine learning: a narrative review with focus on Alzheimer’s disease and oncology. Mol Imaging. 2019;18:1536012119869070.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Choi H, Ha S, Kang H, Lee H, Lee DS, Alzheimer’s Disease Neuroimaging I. Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine. 2019;43:447–53.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Gleeson F, et al. Utility of pre-treatment FDG PET/CT-derived machine learning models for outcome prediction in classical Hodgkin lymphoma. Eur Radiol. 2022;32:7237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur Radiol. 2020;30:6322–30.

    Article  PubMed  Google Scholar 

  18. Tsuneki M. Deep learning models in medical image analysis. J Oral Biosci. 2022;64:312–20.

    Article  PubMed  Google Scholar 

  19. Wang S, Cao G, Wang Y, Liao S, Wang Q, Shi J, et al. Review and prospect: artificial intelligence in advanced medical imaging. Front Radiol. 2021;1: 781868.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, et al. PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol Endocrinol Metab. 2012;303:E1134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ombao H, Lindquist M, Thompson W, Aston J. Handbook of neuroimaging data analysis. Boca Raton: CRC Press; 2017.

  22. Bailey DL, Maisey MN, Townsend DW, Valk PE. Positron emission tomography: Basic Sciences. London: Springer; 2005.

  23. Ziegler SI. Positron emission tomography: principles, technology, and recent developments. Nucl Phys A. 2005;752:679–87.

    Article  Google Scholar 

  24. Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol. 2006;51:R117.

    Article  CAS  PubMed  Google Scholar 

  25. Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med. 2010;2:529–45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S-20S.

    Article  CAS  PubMed  Google Scholar 

  27. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Win AZ, Aparici CM. Normal SUV values measured from NaF18- PET/CT bone scan studies. PLoS ONE. 2014;9: e108429.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Subramaniam RM. Precision medicine and PET/computed tomography: challenges and implementation. PET Clin. 2017;12:1–5.

    Article  PubMed  Google Scholar 

  30. Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med. 2012;53:1041–7.

    Article  CAS  PubMed  Google Scholar 

  31. Dai D, Boroomand S. A review of artificial intelligence to enhance the security of big data systems: state-of-art, methodologies, applications, and challenges. Arch Comput Methods Eng. 2022;29:1291–309.

    Article  Google Scholar 

  32. Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. 2020;183:423–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El Naqa I, Murphy MJ. What Is Machine Learning? In: El Naqa I, Li R, Murphy MJ, editors. Machine learning in radiation oncology: theory and applications. Cham: Springer International Publishing; 2015. p. 3–11.

    Chapter  Google Scholar 

  34. Mamdani M, Slutsky AS. Artificial intelligence in intensive care medicine. Intensive Care Med. 2021;47:147–9.

    Article  PubMed  Google Scholar 

  35. Zhou Z-H. Learnware: on the future of machine learning. Front Comp Sci. 2016;10:589–90.

    Article  Google Scholar 

  36. Singh A, Thakur N, Sharma A, editors. A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016 16–18 March 2016.

  37. Cunningham P, Cord M, Delany SJ. Supervised Learning. In: Cord M, Cunningham P, editors. Machine learning techniques for multimedia: case studies on organization and retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 21–49.

  38. Ghahramani Z. Unsupervised learning. In: Bousquet O, von Luxburg U, Rätsch G, editors. Advanced lectures on machine learning: ML summer schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p. 72–112.

  39. Hady MFA, Schwenker F. Semi-supervised learning. In: Bianchini M, Maggini M, Jain LC, editors. Handbook on neural information processing. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2013. p. 215–39.

    Chapter  Google Scholar 

  40. Loh WY. Classification and regression trees. WIREs Data Mining Knowledge Discovery. 2011;1:14–23.

  41. El-Dahshan E-SA, Mohsen HM, Revett K, Salem A-BM. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl. 2014;41:5526–45.

  42. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ezugwu AE, Ikotun AM, Oyelade OO, Abualigah L, Agushaka JO, Eke CI, Akinyelu AA. A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell. 2022;110: 104743.

    Article  Google Scholar 

  44. Zhang T, Yang B, editors. Big data dimension reduction using PCA. 2016 IEEE International Conference on Smart Cloud (SmartCloud); 2016 18–20 Nov. 2016.

  45. Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2018;66:149–53.

    Article  PubMed  Google Scholar 

  46. Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics. 2013;3:802–15.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Seo S, Kim SJ, Lee DS, Lee JS. Recent advances in parametric neuroreceptor map** with dynamic PET: basic concepts and graphical analyses. Neurosci Bull. 2014;30:733–54.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Muzi M, O’Sullivan F, Mankoff DA, Doot RK, Pierce LA, Kurland BF, et al. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012;30:1203–15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. A graphical method to compare the in vivo binding potential of PET radioligands in the absence of a reference region: application to [(1)(1)C]PBR28 and [(1)(8)F]PBR111 for TSPO imaging. J Cereb Blood Flow Metab. 2014;34:1162–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eary JF, Mankoff DA. Tumor metabolic rates in sarcoma using FDG PET. J Nucl Med. 1998;39:250–4.

    CAS  PubMed  Google Scholar 

  51. Mumcuoglu EU, Leahy RM, Cherry SR. Bayesian reconstruction of PET images: methodology and performance analysis. Phys Med Biol. 1996;41:1777–807.

    Article  CAS  PubMed  Google Scholar 

  52. Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28:881–93.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou J, Coatrieux JL, Bousse A, Shu H, Luo L. A Bayesian MAP-EM algorithm for PET image reconstruction using wavelet transform. IEEE Trans Nucl Sci. 2007;54:1660–9.

    Article  Google Scholar 

  54. Ouyang X, Wong WH, Johnson VE, Hu X, Chen CT. Incorporation of correlated structural images in PET image reconstruction. IEEE Trans Med Imaging. 1994;13:627–40.

    Article  CAS  PubMed  Google Scholar 

  55. Buvat I. A non-parametric bootstrap approach for analysing the statistical properties of SPECT and PET images. Phys Med Biol. 2002;47:1761–75.

    Article  PubMed  Google Scholar 

  56. Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Rahmim A, editors. Quantitative whole-body parametric PET imaging incorporating a generalized Patlak model. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC); 2013 27 Oct.-2 Nov. 2013.

  57. Zhang X, **ong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med. 2006;47:113–21.

    CAS  PubMed  Google Scholar 

  58. Garcia Vicente AM, Soriano Castrejon A, Cruz Mora MA, Gonzalez Ageitos A, Munoz Sanchez Mdel M, Leon Martin A et al. Semi-quantitative lymph node assessment of (18)F-FDG PET/CT in locally advanced breast cancer: correlation with biological prognostic factors. Eur J Nucl Med Mol Imaging. 2013;40:72–9.

  59. Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of (18)F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2022;49:2493–503.

    Article  CAS  PubMed  Google Scholar 

  60. Foldvary N, Lee N, Hanson MW, Coleman RE, Hulette CM, Friedman AH, et al. Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia. 1999;40:26–9.

    Article  CAS  PubMed  Google Scholar 

  61. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006;98:267–74.

    Article  PubMed  Google Scholar 

  62. Khalaf M, Abdel-Nabi H, Baker J, Shao Y, Lamonica D, Gona J. Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. J Hematol Oncol. 2008;1:13.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shokouhi S, Claassen D, Kang H, Ding Z, Rogers B, Mishra A, et al. Longitudinal progression of cognitive decline correlates with changes in the spatial pattern of brain 18F-FDG PET. J Nucl Med. 2013;54:1564–9.

    Article  CAS  PubMed  Google Scholar 

  64. Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S, et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging. 2016;43:133–41.

    Article  PubMed  Google Scholar 

  65. Ashburner J. SPM: a history. Neuroimage. 2012;62(2):791–800.

    Article  PubMed  Google Scholar 

  66. Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, et al. Quantification of lung PET images: challenges and opportunities. J Nucl Med. 2017;58:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Defrise M, Kinahan PE, Michel CJ. Image reconstruction algorithms in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron emission tomography: basic sciences. London: Springer, London; 2005. p. 63–91.

    Chapter  Google Scholar 

  68. Townsend DW. Physical principles and technology of clinical PET imaging. Ann Acad Med Singap. 2004;33:133–45.

    Article  CAS  PubMed  Google Scholar 

  69. Klyuzhin IS, Cheng JC, Bevington C, Sossi V. Use of a tracer-specific deep artificial neural net to denoise dynamic PET images. IEEE Trans Med Imaging. 2020;39:366–76.

    Article  PubMed  Google Scholar 

  70. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.

    CAS  PubMed  Google Scholar 

  71. Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, Hutton BF. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19.

    Article  PubMed  Google Scholar 

  72. Armanious K, Hepp T, Kustner T, Dittmann H, Nikolaou K, La Fougere C, et al. Independent attenuation correction of whole body [(18)F]FDG-PET using a deep learning approach with Generative Adversarial Networks. EJNMMI Res. 2020;10:53.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44:781–99.

    Article  CAS  PubMed  Google Scholar 

  74. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40: 064301.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kennedy JA, Israel O, Frenkel A, Bar-Shalom R, Azhari H. Super-resolution in PET imaging. IEEE Trans Med Imaging. 2006;25:137–47.

    Article  PubMed  Google Scholar 

  76. Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, et al. Recurrence of colorectal tumors: PET evaluation. Radiology. 1989;170:329–32.

    Article  CAS  PubMed  Google Scholar 

  77. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Song AK, Hett K, Eisma JJ, McKnight CD, Elenberger J, Stark AJ, et al. Parasagittal dural space hypertrophy and amyloid-beta deposition in Alzheimer’s disease. Brain Commun. 2023;5:fcad128.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Campbell DL, Kang H, Shokouhi S. Application of Haralick texture features in brain [(18)F]-florbetapir positron emission tomography without reference region normalization. Clin Interv Aging. 2017;12:2077–86.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ennis GE, Betthauser TJ, Koscik RL, Chin NA, Christian BT, Asthana S, et al. The relationship of insulin resistance and diabetes to tau PET SUVR in middle-aged to older adults. Alzheimers Res Ther. 2023;15:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hwang D, Kang SK, Kim KY, Choi H, Lee JS. Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography. Eur J Nucl Med Mol Imaging. 2022;49(6):1833–42.

    Article  CAS  PubMed  Google Scholar 

  82. Choi H, Lee DS, Alzheimer’s Disease Neuroimaging I. Generation of structural MR images from amyloid PET: application to MR-less quantification. J Nucl Med. 2018;59(7):1111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee J, Ha S, Kim REY, Lee M, Kim D, Lim HK. Development of amyloid PET analysis pipeline using deep learning-based brain MRI segmentation-a comparative validation study. Diagnostics (Basel). 2022;12(3):623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim JY, Suh HY, Ryoo HG, Oh D, Choi H, Paeng JC, et al. Amyloid PET quantification via end-to-end training of a deep learning. Nucl Med Mol Imaging. 2019;53(5):340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duchesnay E, Cachia A, Boddaert N, Chabane N, Mangin JF, Martinot JL, et al. Feature selection and classification of imbalanced datasets: application to PET images of children with autistic spectrum disorders. Neuroimage. 2011;57:1003–14.

    Article  PubMed  Google Scholar 

  86. Kocher M, Ruge MI, Galldiks N, Lohmann P. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther Onkol. 2020;196:856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A Deep Learning model to predict a diagnosis of Alzheimer disease by using. Radiology. 2019;290:456–64.

    Article  PubMed  Google Scholar 

  88. Romeo V, Clauser P, Rasul S, Kapetas P, Gibbs P, Baltzer PAT, et al. AI-enhanced simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. Eur J Nucl Med Mol Imaging. 2022;49:596–608.

    Article  CAS  PubMed  Google Scholar 

  89. Miller RJH, Huang C, Liang JX, Slomka PJ. Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology. J Nucl Cardiol. 2022;29:1754–62.

    Article  PubMed  Google Scholar 

  90. Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [(1)(8)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38:2136–44.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li L, Zhao X, Lu W, Tan S. Deep Learning for variational multimodality tumor segmentation in PET/CT. Neurocomputing (Amst). 2020;392:277–95.

    Article  PubMed  Google Scholar 

  92. Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46:e1–36.

    Article  PubMed  Google Scholar 

  93. Mecheter I, Alic L, Abbod M, Amira A, Ji J. MR Image-based attenuation correction of brain PET imaging: review of literature on machine learning approaches for segmentation. J Digit Imaging. 2020;33:1224–41.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen L, Shen C, Zhou Z, Maquilan G, Albuquerque K, Folkert MR, Wang J. Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior. Phys Med Biol. 2019;64: 085019.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cui R, Chen Z, Wu J, Tan Y, Yu G. A multiprocessing scheme for PET image pre-screening, noise reduction, segmentation and lesion partitioning. IEEE J Biomed Health Inform. 2021;25:1699–711.

    Article  PubMed  Google Scholar 

  96. Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. Neuroimage Clin. 2018;20:572–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pedersen F, Bergstrom M, Bengtsson E, Langstrom B. Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med. 1994;21(12):1285–92.

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Yao Z, Yu Y, Zou Y, Fu Y, Hu B, Alzheimer’s Disease Neuroimaging I. Brain network alterations in individuals with and without mild cognitive impairment: parallel independent component analysis of AV1451 and AV45 positron emission tomography. BMC Psychiatry. 2019;19(1):165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ji H, Lafata K, Mowery Y, Brizel D, Bertozzi AL, Yin FF, Wang C. Post-radiotherapy PET Image outcome prediction by deep learning under biological model guidance: a feasibility study of oropharyngeal cancer application. Front Oncol. 2022;12: 895544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kang SH, Kim J, Kim JP, Cho SH, Choe YS, Jang H, et al. Harmonisation of PET imaging features with different amyloid ligands using machine learning-based classifier. Eur J Nucl Med Mol Imaging. 2021;49:321–30.

    Article  CAS  PubMed  Google Scholar 

  101. Choi H, ** KH, Alzheimer’s Disease Neuroimaging I. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.

    Article  CAS  PubMed  Google Scholar 

  102. Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16:933–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sanaat A, Mirsadeghi E, Razeghi B, Ginovart N, Zaidi H. Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation. Med Phys. 2021;48:5059–71.

    Article  PubMed  Google Scholar 

  104. Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, et al. PET image denoising using unsupervised deep learning. Eur J Nucl Med Mol Imaging. 2019;46:2780–9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Choi H. Deep learning in nuclear medicine and molecular imaging: current perspectives and future directions. Nucl Med Mol Imaging. 2018;52:109–18.

    Article  CAS  PubMed  Google Scholar 

  106. Zheng X, Yao Z, Huang Y, Yu Y, Wang Y, Liu Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun. 2020;11:1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Avanzo M, Wei L, Stancanello J, Vallieres M, Rao A, Morin O, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47:e185–202.

    Article  PubMed  Google Scholar 

  108. Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, Yang X. Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulen J, Poulsen MH, et al. Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol. 2019;113:89–95.

    Article  PubMed  Google Scholar 

  110. Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology. Semin Nucl Med. 2000;30:150–85.

    Article  CAS  PubMed  Google Scholar 

  111. Domingues I, Pereira G, Martins P, Duarte H, Santos J, Abreu PH. Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET. Artif Intell Rev. 2020;53:4093–160.

    Article  Google Scholar 

  112. Seifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial intelligence and machine learning in nuclear medicine: future perspectives. Semin Nucl Med. 2021;51:170–7.

    Article  PubMed  Google Scholar 

  113. Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, Knol RJJ, Knuuti J. Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging. 2020;13:180–2.

    Article  PubMed  Google Scholar 

  114. Lodha P, Talele A, Degaonkar K, editors. Diagnosis of Alzheimer’s disease using machine learning. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA); 2018 16–18 Aug. 2018.

  115. Brix G, Lechel U, Glatting G, Ziegler SI, Munzing W, Muller SP, Beyer T. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The review was designed by Hakmook Kang. The first draft of the manuscript was written by Ke Xu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hakmook Kang.

Ethics declarations

Conflict of Interest

Ke Xu and Hakmook Kang declare no conflict of interests.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Kang, H. A Review of Machine Learning Approaches for Brain Positron Emission Tomography Data Analysis. Nucl Med Mol Imaging 58, 203–212 (2024). https://doi.org/10.1007/s13139-024-00845-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-024-00845-6

Keywords

Navigation