Log in

Solitary waves of the fractal Whitham–Broer–Kaup equation in shallow water

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In the current work, we propose the fractal Whitham–Broer–Kaup equation which can well describe the propagation of shallow water travelling along unsmooth boundary (such as the fractal seabed). By the Semi-inverse method, we establish its fractal variational principle, which is proved to have a strong minimum condition by He–Weierstrass theorem. Then the fractal variational method is used to seek its solitary wave solution. The impact of the fractal order on the behaviors of the solitary wave is presented through the 3-D plots and 2-D curves. The finding in this paper is important for the coast protection and expected to bring a light to the study of the fractal theoretical basis in the geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attia, R.A.M., Baleanu, D., Lu, D., et al.: Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete Continuous Dyn. Syst. 14, 3459 (2021)

    Article  MathSciNet  Google Scholar 

  • Baleanu, D., Khan, H., Jafari, H., Khan, R.A.: On the exact solution of wave equations on cantor sets. Entropy 17(9), 6229–6237 (2015)

    Article  MathSciNet  Google Scholar 

  • Cao, X.Q., Guo, Y.N., Hou, S.C., Peng, K.C.: Variational principles for two kinds of coupled nonlinear equations in shallow water. Symmetry 12, 850 (2020)

    Article  Google Scholar 

  • Cao, X.Q., Hou, S.C., Guo, Y.N., Peng, K.C.: Variational principle for (2+1)-dimensional Broer–Kaup equations with fractal derivatives. Fractals 28(07), 2050107 (2020)

    Article  Google Scholar 

  • Cao, X.Q., Zhang, C.Z., Hou, S.C., Guo, Y.N.: Variational theory for (2+1)-dimensional fractional dispersive long wave equations. Therm. Sci. 25(00), 23–23 (2021)

    Google Scholar 

  • Elboree, M.K.: Derivation of soliton solutions to nonlinear evolution equations using He’s variational principle. Appl. Math. Model. 39(14), 4196–4201 (2015)

    Article  MathSciNet  Google Scholar 

  • Elboree, M.K.: Soliton solutions for some nonlinear partial differential equations in mathematical physics using He’s Variational method. Int. J. Nonlinear Sci. Numer. Simul. 21(2), 147–158 (2020)

    Article  MathSciNet  Google Scholar 

  • El-Sayed, S.M., Kaya, D.: Exact and numerical traveling wave solutions of Whitham–Broer–Kaup equations. Appl. Math. Comput. 167(2), 1339–1349 (2005)

    MathSciNet  MATH  Google Scholar 

  • Guo, S., Zhou, Y.: The extended G′/G-expansion method and its applications to the Whitham–Broer–Kaup-Like equations and coupled Hirota–Satsuma KdV equations. Appl. Math. Comput. 215(9), 3214–3221 (2010)

    MathSciNet  MATH  Google Scholar 

  • Hauck, M., Aizinger, V., Frank, F., et al.: Enriched Galerkin method for the shallow-water equations. Int. J. Geomath. 11, 31 (2020)

    Article  MathSciNet  Google Scholar 

  • He, J.-H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Engines 14(1), 23–28 (1997)

    Google Scholar 

  • He, J.H.: Fractal calculus and its geometrical explanation. Res. Phys. 10, 272–276 (2018)

    Google Scholar 

  • He, J.H., Qie, N., He, C.H., Saeed, T.: On a strong minimum condition of a fractal variational principle. Appl. Math. Lett. Article number: 107199 (2021)

  • He, J.-H., Qie, N., He, C.-H.: Solitary waves travelling along an unsmooth boundary. Res. Phys. Article Number: 104104 (2021)

  • Khan, Y.: A variational approach for novel solitary solutions of FitzHugh–Nagumo equation arising in the nonlinear reaction–diffusion equation. Int. J. Numer. Meth. Heat Fluid Flow (2020). https://doi.org/10.1108/HFF-05-2020-0299

    Article  Google Scholar 

  • Khan, Y., Faraz, N., Yildirim, A.: New soliton solutions of the generalized Zakharov equations using He’s variational approach. Appl. Math. Lett. 24(6), 965–968 (2011)

    Article  MathSciNet  Google Scholar 

  • Kuo, C.K.: New solitary solutions of the Gardner equation and Whitham–Broer–Kaup equations by the modified simplest equation method. Optik 147, 128–135 (2017)

    Article  Google Scholar 

  • Liu, J.-G., Yang, X.-J., Geng, L.-L., Fan, Y.-R.: Group analysis of the time fractional (3+1)-dimensional KdV-type equation. Fractals (2021). https://doi.org/10.1142/S0218348X21501693

    Article  Google Scholar 

  • Liu, J.-G., Yang, X.-J., Feng, Y.-Y., et al.: On integrability of the higher-dimensional time fractional KdV-type equation. J. Geometry Phys. 160, 104000 (2021)

    Article  MathSciNet  Google Scholar 

  • Rafei, M., Daniali, H.: Application of the variational iteration method to the Whitham–Broer–Kaup equations. Comput. Math. Appl. 54(7–8), 1079–1085 (2007)

    Article  MathSciNet  Google Scholar 

  • Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. Int. J. Geomath. 8, 85–133 (2017)

    Article  MathSciNet  Google Scholar 

  • Song, M., Cao, J., Guan, X.: Application of the bifurcation method to the Whitham–Broer–Kaup-Like equations. Math. Comput. Model. 55(3–4), 688–696 (2012)

    Article  MathSciNet  Google Scholar 

  • Wang, K.J.: A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. plus 135, 871 (2020)

    Article  Google Scholar 

  • Wang, K.L.: A new fractal transform frequency formulation for fractal nonlinear oscillators. Fractals 29(3), 2150062 (2021)

    Article  Google Scholar 

  • Wang, K.J., Wang, G.D.: Solitary and periodic wave solutions of the generalized fourth order boussinesq equation via He’s variational methods. Math. Methods Appl. Sci. 44(7), 5617–5625 (2021a)

    Article  MathSciNet  Google Scholar 

  • Wang, K.J., Wang, G.D.: Variational principle, solitary and periodic wave solutions of the fractal modified equal width equation in plasma physics. Fractals 29(5), 2150115 (2021b)

    Article  Google Scholar 

  • Wang, K.-J., Zhu, H.-W., Liu, X.-L., Wang, G.-D.: Constructions of new abundant traveling wave solutions for system of the ion sound and Langmuir waves by the variational direct method. Res. Phys. 26, 104375 (2021)

    Google Scholar 

  • Wang, K.J., Wang, G.D., Zhu, H.W.: A new perspective on the study of the fractal coupled Boussinesq–Burger equation in shallow water. Fractals 29(5), 2150122 (2021)

    Article  Google Scholar 

  • Wenhui, Z., Hongwei, Y., Dezhi, G.: Time fractional order mZK model and its exact solution in dust plasma. Math. Model. Its Appl. 4, 66–73 (2020)

    Google Scholar 

  • **e, F., Yan, Z., Zhang, H.: Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations. Phys. Lett. A 285(1–2), 76–80 (2001)

    Article  MathSciNet  Google Scholar 

  • Xu, G., Li, Z.: Exact travelling wave solutions of the Whitham–Broer–Kaup and Broer–Kaup–Kupershmidt equations. Chaos Solitons Fract. 24(2), 549–556 (2005)

    Article  MathSciNet  Google Scholar 

  • Yan, Z., Zhang, H.: New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A 285(5–6), 355–362 (2001)

    Article  MathSciNet  Google Scholar 

  • Yang, X.J., Srivastava, H.M.: An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 499–504 (2015)

    Article  MathSciNet  Google Scholar 

  • Yang, X.J., Machado, J.A.T., Cattani, C., et al.: On a fractal LC electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200–206 (2017)

    Article  Google Scholar 

  • Zhao, X.H., Zhang, Y., Zhao, D., et al.: The RC circuit described by local fractional differential equations. Fund. Inform. 151(1–4), 419–429 (2017)

    MathSciNet  MATH  Google Scholar 

  • Zheng, Z., Shan, W.R.: Application of Exp-function method to the Whitham–Broer–Kaup shallow water model using symbolic computation. Appl. Math. Comput. 215(6), 2390–2396 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Program of Henan Polytechnic University (No. B2018-40), Innovative Scientists and Technicians Team of Henan Provincial High Education (21IRTSTHN016), the Fundamental Research Funds for the Universities of Henan Province (NSFRF210324), Key Project of Scientific and Technology Research of Henan Province (212102210224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Jia Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YH., Wang, GD. & Wang, KJ. Solitary waves of the fractal Whitham–Broer–Kaup equation in shallow water. Int J Geomath 12, 22 (2021). https://doi.org/10.1007/s13137-021-00189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-021-00189-9

Keywords

Mathematics Subject Classification

Navigation