Log in

A hydrothermal investigation system for the Qianlong-II autonomous underwater vehicle

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Qianlong-II is a fully autonomous underwater vehicle designed for the investigation of submarine resources, particularly polymetallic sulfides. It was used to successfully explore hydrothermal fields on the Southwest Indian Ridge. Here, we summarized the exploration of hydrothermal systems using Qianlong-II, including detailed descriptions of its implementation along with the systems used for data management and fast map**. We also introduced a method to remove platform magnetic interference using magnetic data while Qianlong-II is spinning. Based on hydrothermal anomalies collected by Qianlong-II, we developed a rapid method for locating hydrothermal vents. Taking one dive as an example, we systemically demonstrated the process for analyzing hydrothermal survey data to locate hydrothermal vents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen B, Stokey R, Austin T, et al. 1997. REMUS: a small, low cost AUV; system description, field trials and performance results. In: MTS/IEEE Conference Proceedings Oceans. Halifax, NS, Canada: IEEE, 2: 994–1000

    Article  Google Scholar 

  • Baccou P, Jouvencel B. 2002. Homing and navigation using one transponder for AUV, postprocessing comparisons results with long base-line navigation. In: Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA: IEEE, 4004–4009

    Google Scholar 

  • Baross J A, Hoffman S E. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of the Biosphere, 15(4): 327–345, doi: https://doi.org/10.1007/BF01808177

    Article  Google Scholar 

  • Bellingham J G, Goudey C A, Consi T R, et al. 1994. A second generation survey AUV. In: Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology. Cambridge, MA, USA: IEEE, 148–155

    Google Scholar 

  • Caratori T F, De Ronde C E J, Yoerger D, et al. 2012. 3-D focused inversion of near-seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand. Journal of Geophysical Research: Solid Earth, 117(B10): B10102

    Book  Google Scholar 

  • Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal sprirngs on the galápagos rift. Science, 203(4385): 1073–1083, doi: https://doi.org/10.1126/science.203.4385.1073

    Article  Google Scholar 

  • Edmonds H N, German C R. 2004. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 68(4): 759–772, doi: https://doi.org/10.1016/S0016-7037(03)00498-8

    Article  Google Scholar 

  • Fouquet Y. 1997. Where are the large hydrothermal sulphide deposits in the oceans?. Philosophical Transactions of the royal Society A: Mathematical, Physical and Engineering Sciences, 355(1723): 427–441, doi: https://doi.org/10.1098/rsta.1997.0015

    Article  Google Scholar 

  • Galley A G, Hannington M D, Jonasson I R. 2007. Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces and exploration methods. Mineral Deposits Division, Special Publication, 5: 509–531

    Google Scholar 

  • German C R, Yoerger D R, Jakuba M, et al. 2008. Hydrothermal exploration with the Autonomous Benthic Explorer. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 203–219, doi: https://doi.org/10.1016/j.dsr.2007.11.004

    Article  Google Scholar 

  • Hagen P E. 2001. AUV/UUV mission planning and real time control with the HUGIN operator system. In: Conference Proceedings MTS/IEEE Oceans 2001. Honolulu, HI, USA: IEEE, 1: 468–473

    Google Scholar 

  • Herzig P M. 1999. Economic potential of sea-floor massive sulphide deposits: ancient and modern. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357(1753): 861–875, doi: https://doi.org/10.1098/rsta.1999.0355

    Article  Google Scholar 

  • IXSEA. 2004. USBL Posidonia 6000 Positioning System, User’s Manual. Brest, France.

    Google Scholar 

  • Jakuba M V, Kinsey J C, Yoerger D R, et al. 2011. Exploration of the gulf of Mexico oil spill with the sentry autonomous underwater vehicle. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) Workshop on Robotics for Environmental Monitoring (WREM)

    Google Scholar 

  • Johnson H P, Pruis M J. 2003. Fluxes of fluid and heat from the oceanic crustal reservoir. Earth and Planetary Science Letters, 216(4): 565–574, doi: https://doi.org/10.1016/S0012-821X(03)00545-4

    Article  Google Scholar 

  • Liu Tao, Xu Qi’nan, WANG Huizheng, et al. 2002. “CR-02” 6000m AUV hull structure systems. Journal of Ship Mechanics, 6(6): 114–119

    Google Scholar 

  • Martin W, Baross J, Kelley D, et al. 2008. Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6(11): 805–814, doi: https://doi.org/10.1038/nrmicro1991

    Article  Google Scholar 

  • Millard N W, McPhail S D, Stevenson P, et al. 2003. Multidisciplinary ocean science applications of an AUV: the Autosub science missions programme. In: Griffiths G, ed. The Technology and Applications of Autonomous Underwater Vehicles. Abingdon, UK: Taylor & Francis

    Google Scholar 

  • Mu Lingji, Chen E, Huang Shenwei, et al. 2013. Mechatronic system design for science/work class ROV. Applied Mechanics and Materials, 284–287: 1867–1871

    Google Scholar 

  • Purcell M, Alt C V, Allen B, et al. 2002. New capabilities of the REMUS autonomous underwater vehicle. In: Conference Proceedings OCEANS 2000 MTS/IEEE Conference and Exhibition. Providence, RI, USA: IEEE, 1: 147–151

    Google Scholar 

  • Rona P A, Hannington M D, Raman C V, et al. 1993. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, mid-Atlantic ridge. Economic Geology, 88(8): 1989–1989, doi: https://doi.org/10.2113/gsecongeo.88.8.1989

    Article  Google Scholar 

  • Shcherbina A Y, Gawarkiewicz G G, Linder C A, et al. 2008. Map** bathymetric and hydrographic features of Glover’s Reef, Belize, with a REMUS autonomous underwater vehicle. Limnology & Oceanography, 53(5part2): 2264–2272

    Google Scholar 

  • Tao Chunhui, Lin Jian, Guo Shiqin. 2007. Discovery of the first active hydrothermal vent field at the ultraslowspreading Southwest Indian Ridge. InterRidge News, 16: 25–26

    Google Scholar 

  • Tao Chunhui, Li Huaiming, ** **aobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Science Bulletin, 59(19): 2266–2276, doi: https://doi.org/10.1007/s11434-014-0182-0

    Article  Google Scholar 

  • Thomson R E, Davis E E, Burd B J. 1995. Hydrothermal venting and geothermal heating in Cascadia Basin. Journal of Geophysical Research: Solid Earth, 100(B4): 6121–6141, doi: https://doi.org/10.1029/95JB00030

  • Tivey M A, Dyment J. 2010. The magnetic signature of hydrothermal systems in slow spreading environments. In: Rona P A, ed. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 43–66

    Book  Google Scholar 

  • Ura T, Obara T, Nagahashi K, et al. 2004. Introduction to an AUV “r2D4” and its Kuroshima knoll survey mission. In: Oceans’04 MTS/IEEE Techno-Ocean’04. Kobe, Japan: IEEE, 2: 840–845

    Google Scholar 

  • Ura T, Obara T, Takagawa S, et al. 2001. Exploration of Teisi Knoll by autonomous underwater vehicle "R-One robot". In: Conference Proceedings MTS/IEEE Oceans 2001. An Ocean Odyssey. Honolulu, HI, USA: IEEE, 1: 456–461

    Article  Google Scholar 

  • Ura T, Tamaki K, Asada A, et al. 2007. Dives of AUV “r2D4” to rift valley of central Indian mid-ocean ridge system. In: OCEANS 2007-Europe. Aberdeen, UK: IEEE, 1–6

    Google Scholar 

  • Vestgard K, Storkersen N, Sortland J. 1999. Seabed surveying with the Hugin AUV. In: Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology. Durham, New-Hampshire, USA: University of New Hampshiremarine Systems, 63–74

    Google Scholar 

  • Wu T, Tao C H, Liu C, et al. 2018. Correction of tri-axial magnetometer interference caused by an autonomous underwater vehicle near-bottom platform. Ocean Engineering, 160(2018): 68–77

    Google Scholar 

  • Wu Jianguo, Liu Jian, Xu Huixi. 2014. A variable buoyancy system and a recovery system developed for a deep-sea AUV Qianlong I. In: OCEANS 2014-TAIPEI. Taipei, Taiwan: IEEE, 1–4

    Google Scholar 

  • Yoerger D R, Bradley A M, Jakuba M, et al. 2007. Autonomous and remotely operated vehicle technology for hydrothermal vent discovery, exploration, and sampling. Oceanography, 20(1): 152–161, doi: 10.5670/oceanog

    Article  Google Scholar 

  • Yoerger D R, Bradley A M, Martin S C, et al. 2006. The Sentry Autonomous Underwater Vehicle: Field Trial Results and Future Capabilities. In: AGU Fall Meeting Abstracts

    Google Scholar 

Download references

Acknowledgements

We thank the experimental team members of the 4 500 m Qianlong-II AUV technology application system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Additional information

Foundation item: The Technology Upgrading and Scientific Applications of the 4 500 m Depth Rated Qianlong II AUV under contract No. 2017YFC0306803; the National Key R&D Program of China under contract No. 2018YFC0309901; the COMRA Major Project under contract Nos DY135-S1-01-06 and DY135-S1-01-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Tao, C., Zhang, J. et al. A hydrothermal investigation system for the Qianlong-II autonomous underwater vehicle. Acta Oceanol. Sin. 38, 159–165 (2019). https://doi.org/10.1007/s13131-019-1408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1408-4

Key words

Navigation