Log in

The role of PKM2 in cancer progression and its structural and biological basis

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abeywardana T, Oh M, Jiang L et al (2018) CARM1 suppresses de novo serine synthesis by promoting PKM2 activity. J Biol Chem 293:15290–15303. https://doi.org/10.1074/jbc.RA118.004512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alquraishi M, Puckett DL, Alani DS et al (2019) Pyruvate kinase M2: A simple molecule with complex functions. Free Radical Biol Med 143:176–192. https://doi.org/10.1016/j.freeradbiomed.2019.08.007

    Article  CAS  Google Scholar 

  3. Anastasiou D, Poulogiannis G, Asara JM et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science (New York, N.Y.) 334 1278–1283 https://doi.org/10.1126/science.1211485

  4. An S, Huang L, Miao P et al (2018) Small ubiquitin-like modifier 1 modification of pyruvate kinase M2 promotes aerobic glycolysis and cell proliferation in A549 human lung cancer cells. Onco Targets Ther 11:2097–2109. https://doi.org/10.2147/ott.S156918

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anastasiou D, Yu Y, Israelsen WJ et al (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847. https://doi.org/10.1038/nchembio.1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azoitei N, Becher A, Steinestel K et al (2016) PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer 15:3. https://doi.org/10.1186/s12943-015-0490-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boussiotis VA (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med 375:1767–1778. https://doi.org/10.1056/NEJMra1514296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaneton B, Hillmann P, Zheng L et al (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491:458–462. https://doi.org/10.1038/nature11540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Jiang Z, Wang B et al (2012) Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2. Cancer Lett 316:204–210. https://doi.org/10.1016/j.canlet.2011.10.039

    Article  CAS  PubMed  Google Scholar 

  10. Chen M, Liu H, Li Z et al (2021) Mechanism of PKM2 affecting cancer immunity and metabolism in Tumor Microenvironment, Journal of. Cancer 12:3566–3574. https://doi.org/10.7150/jca.54430

    Article  CAS  Google Scholar 

  11. Dai Y, Liu P, Wen W et al (2023) Sarsasapogenin, a principal active component absorbed into blood of total saponins of Anemarrhena, attenuates proliferation and invasion in rheumatoid arthritis fibroblast-like synoviocytes through downregulating PKM2 inhibited pathological glycolysis. Phytotherapy research : PTR. https://doi.org/10.1002/ptr.7712

    Article  PubMed  Google Scholar 

  12. David CJ, Chen M, Assanah M et al (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368. https://doi.org/10.1038/nature08697

    Article  CAS  PubMed  Google Scholar 

  13. Ding Y, Xue Q, Liu S et al (2020) Identification of Parthenolide Dimers as Activators of Pyruvate Kinase M2 in Xenografts of Glioblastoma Multiforme in Vivo. J Med Chem 63:1597–1611. https://doi.org/10.1021/acs.jmedchem.9b01328

    Article  CAS  PubMed  Google Scholar 

  14. Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44:9417–9429. https://doi.org/10.1021/bi0474923

    Article  CAS  PubMed  Google Scholar 

  15. Du Y, Dong S, Jiang W, et al. (2023) Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing Reveals That TAM2-Driven Genes Affect Immunotherapeutic Response and Prognosis in Pancreatic Cancer, Int J Mol Sci 24 https://doi.org/10.3390/ijms241612787

  16. Feng J, Dai W, Mao Y et al (2020) Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res: CR 39:24. https://doi.org/10.1186/s13046-020-1528-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giannoni E, Taddei ML, Morandi A, et al. (2015) Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread, Oncotarget 6 24061–24074 https://doi.org/10.18632/oncotarget.4448

  18. Gordon SR, Maute RL, Dulken BW et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499. https://doi.org/10.1038/nature22396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gui DY, Lewis CA, Vander Heiden MG (2013) Allosteric regulation of PKM2 allows cellular adaptation to different physiological states, Sci Signal 6 pe7 https://doi.org/10.1126/scisignal.2003925

  20. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  21. He D, Feng H, Sundberg B et al (2022) Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis. Mol Cell 82:3045-3060.e3011. https://doi.org/10.1016/j.molcel.2022.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hitosugi T, Kang S, Vander Heiden MG et al (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73. https://doi.org/10.1126/scisignal.2000431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hou PP, Luo LJ, Chen HZ et al (2020) Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment. Mol Cell 78:1192-1206.e1110. https://doi.org/10.1016/j.molcel.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  24. Jiang JK, Walsh MJ, Brimacombe KR, et al. (2010) ML265: A potent PKM2 activator induces tetramerization and reduces tumor formation and size in a mouse xenograft model. Probe Reports from the NIH Molecular Libraries Program, National Center for Biotechnology Information (US), Bethesda (MD). https://www.ncbi.nlm.nih.gov/books/NBK153222/

  25. Jurisic V (2020) Multiomic analysis of cytokines in immuno-oncology. Exp Rev Proteomics 17:663–674. https://doi.org/10.1080/14789450.2020.1845654

    Article  CAS  Google Scholar 

  26. Jurisić V, Konjević G, Jancić-Nedeljkov R et al (2004) The comparison of spontaneous LDH release activity from cultured PBMC with sera LDH activity in non-Hodgkin’s lymphoma patients. Med Oncol (Northwood, London, England) 21:179–185. https://doi.org/10.1385/mo:21:2:179

    Article  Google Scholar 

  27. Jurisic V, Radenkovic S, Konjevic G (2015) The Actual Role of LDH as Tumor Marker, Biochemical and Clinical Aspects. Adv Exp Med Biol 867:115–124. https://doi.org/10.1007/978-94-017-7215-0_8

    Article  CAS  PubMed  Google Scholar 

  28. Keller KE, Tan IS, Lee YS (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Sci (New York, N.Y.) 338:1069–1072. https://doi.org/10.1126/science.1224409

    Article  CAS  Google Scholar 

  29. Keller KE, Doctor ZM, Dwyer ZW et al (2014) SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 53:700–709. https://doi.org/10.1016/j.molcel.2014.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim DJ, Park YS, Kang MG et al (2015) Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells. Exp Cell Res 336:119–129. https://doi.org/10.1016/j.yexcr.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  31. Konjević G, Jurisić V, Spuzić I (2001) Association of NK cell dysfunction with changes in LDH characteristics of peripheral blood lymphocytes (PBL) in breast cancer patients. Breast Cancer Res Treat 66:255–263. https://doi.org/10.1023/a:1010602822483

    Article  PubMed  Google Scholar 

  32. Konjević GM, Vuletić AM, Mirjačić Martinović KM et al (2019) The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 117:30–40. https://doi.org/10.1016/j.cyto.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Zhao Z, Zhou Z et al (2016) PKM2 Promotes Cell Survival and Invasion Under Metabolic Stress by Enhancing Warburg Effect in Pancreatic Ductal Adenocarcinoma. Dig Dis Sci 61:767–773. https://doi.org/10.1007/s10620-015-3931-2

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Deng S, Liu M et al (2018) The responsively decreased PKM2 facilitates the survival of pancreatic cancer cells in hypoglucose. Cell Death Dis 9:133. https://doi.org/10.1038/s41419-017-0158-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li TE, Wang S, Shen XT et al (2020) PKM2 Drives Hepatocellular Carcinoma Progression by Inducing Immunosuppressive Microenvironment. Front Immunol 11:589997. https://doi.org/10.3389/fimmu.2020.589997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li L, Song D, Qi L et al (2021) Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis. Cancer Lett 520:143–159. https://doi.org/10.1016/j.canlet.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  37. Liang J, Cao R, Wang X et al (2017) Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res 27:329–351. https://doi.org/10.1038/cr.2016.159

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Wu N, Ma L et al (2014) Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLoS ONE 9:e91606. https://doi.org/10.1371/journal.pone.0091606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu F, Ma F, Wang Y et al (2017) PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 19:1358–1370. https://doi.org/10.1038/ncb3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo W, Semenza GL (2012) Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab 23:560–566. https://doi.org/10.1016/j.tem.2012.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lv L, Li D, Zhao D et al (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42:719–730. https://doi.org/10.1016/j.molcel.2011.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lv L, Xu YP, Zhao D et al (2013) Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 52:340–352. https://doi.org/10.1016/j.molcel.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macpherson JA, Theisen A, Masino L, et al. (2019) Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation, eLife 8 https://doi.org/10.7554/eLife.45068

  44. Mirjačić Martinović K, Vuletić A, Tišma Miletić N et al (2023) Circulating cytokine dynamics as potential biomarker of response to anti-PD-1 immunotherapy in BRAFwt MM patients. Transl Oncol 38:101799. https://doi.org/10.1016/j.tranon.2023.101799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morgan HP, O’Reilly FJ, Wear MA et al (2013) M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc Natl Acad Sci USA 110:5881–5886. https://doi.org/10.1073/pnas.1217157110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nandi S, Dey M (2020) Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2. J Biol Chem 295:5390–5403. https://doi.org/10.1074/jbc.RA120.013030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nandi S, Razzaghi M, Srivastava D et al (2020) Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J Biol Chem 295:17425–17440. https://doi.org/10.1074/jbc.RA120.015800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Noguchi T, Inoue H, Tanaka T (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261:13807–13812

    Article  CAS  PubMed  Google Scholar 

  49. Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253. https://doi.org/10.1038/cddis.2016.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park SH, Ozden O, Liu G et al (2016) SIRT2-Mediated Deacetylation and Tetramerization of Pyruvate Kinase Directs Glycolysis and Tumor Growth. Can Res 76:3802–3812. https://doi.org/10.1158/0008-5472.Can-15-2498

    Article  CAS  Google Scholar 

  51. Popović B, Jekić B, Novaković I et al (2007) Bcl-2 expression in oral squamous cell carcinoma. Ann N Y Acad Sci 1095:19–25. https://doi.org/10.1196/annals.1397.003

    Article  CAS  PubMed  Google Scholar 

  52. Qi H, Ning X, Yu C et al (2019) Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis 10:170. https://doi.org/10.1038/s41419-018-1271-9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rajala RVS (2020) Aerobic Glycolysis in the Retina: Functional Roles of Pyruvate Kinase Isoforms. Front Cell Dev Biol 8:266. https://doi.org/10.3389/fcell.2020.00266

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ren R, Guo J, Shi J et al (2020) PKM2 regulates angiogenesis of VR-EPCs through modulating glycolysis, mitochondrial fission, and fusion. J Cell Physiol 235:6204–6217. https://doi.org/10.1002/jcp.29549

    Article  CAS  PubMed  Google Scholar 

  55. Saleme B, Gurtu V, Zhang Y, et al. (2019) Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity, Science translational medicine 11 https://doi.org/10.1126/scitranslmed.aau8866

  56. Singh JP, Qian K, Lee JS et al (2020) O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene 39:560–573. https://doi.org/10.1038/s41388-019-0975-3

    Article  CAS  PubMed  Google Scholar 

  57. Sizemore ST, Zhang M, Cho JH et al (2018) Pyruvate kinase M2 regulates homologous recombination-mediated DNA double-strand break repair. Cell Res 28:1090–1102. https://doi.org/10.1038/s41422-018-0086-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Srivastava D, Nandi S, Dey M (2019) Mechanistic and Structural Insights into Cysteine-Mediated Inhibition of Pyruvate Kinase Muscle Isoform 2. Biochemistry 58:3669–3682. https://doi.org/10.1021/acs.biochem.9b00349

    Article  CAS  PubMed  Google Scholar 

  59. Tang JC, Zhao J, Long F et al (2018) Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo. J Cancer 9:32–40. https://doi.org/10.7150/jca.21224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tao T, Su Q, Xu S et al (2019) Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol 234:3088–3104. https://doi.org/10.1002/jcp.27129

    Article  CAS  PubMed  Google Scholar 

  61. Villar VH, Merhi F, Djavaheri-Mergny M et al (2015) Glutaminolysis and autophagy in cancer. Autophagy 11:1198–1208. https://doi.org/10.1080/15548627.2015.1053680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang P, Sun C, Zhu T et al (2015) Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell 6:275–287. https://doi.org/10.1007/s13238-015-0132-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang F, Wang K, Xu W et al (2017) SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep 19:2331–2344. https://doi.org/10.1016/j.celrep.2017.05.065

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Liu J, ** X et al (2017) O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci USA 114:13732–13737. https://doi.org/10.1073/pnas.1704145115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Hao F, Nan Y et al (2018) PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis. Int J Biol Sci 14:1883–1891. https://doi.org/10.7150/ijbs.27854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang D, Zhao C, Xu F et al (2021) Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 11:2860–2875. https://doi.org/10.7150/thno.51797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Shu H, Liu J et al (2022) EGF promotes PKM2 O-GlcNAcylation by stimulating O-GlcNAc transferase phosphorylation at Y976 and their subsequent association. J Biol Chem 298:102340. https://doi.org/10.1016/j.jbc.2022.102340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang J, Yang P, Yu T et al (2022) Lactylation of PKM2 Suppresses Inflammatory Metabolic Adaptation in Pro-inflammatory Macrophages. Int J Biol Sci 18:6210–6225. https://doi.org/10.7150/ijbs.75434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530. https://doi.org/10.1085/jgp.8.6.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wong N, De Melo J, Tang D (2013) PKM2, a Central Point of Regulation in Cancer Metabolism. Int J Cell Biol 2013:242513. https://doi.org/10.1155/2013/242513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. **a L, Jiang Y, Zhang XH et al (2021) SUMOylation disassembles the tetrameric pyruvate kinase M2 to block myeloid differentiation of leukemia cells. Cell Death Dis 12:101. https://doi.org/10.1038/s41419-021-03400-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. **a Y, Wang X, Liu Y et al (2022) PKM2 Is Essential for Bladder Cancer Growth and Maintenance. Can Res 82:571–585. https://doi.org/10.1158/0008-5472.Can-21-0403

    Article  CAS  Google Scholar 

  73. **a Q, Jia J, Hu C et al (2022) Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma. Oncogene 41:865–877. https://doi.org/10.1038/s41388-021-02133-5

    Article  CAS  PubMed  Google Scholar 

  74. ** G et al (2017) Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8:6984–6993. https://doi.org/10.18632/oncotarget.14346

    Article  PubMed  Google Scholar 

  75. Xu Q, Liu LZ, Yin Y et al (2015) Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene 34:5482–5493. https://doi.org/10.1038/onc.2015.6

    Article  CAS  PubMed  Google Scholar 

  76. Xu Q, Tu J, Dou C et al (2017) HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 16:178. https://doi.org/10.1186/s12943-017-0748-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan M, Chakravarthy S, Tokuda JM et al (2016) Succinyl-5-aminoimidazole-4-carboxamide-1-ribose 5’-Phosphate (SAICAR) Activates Pyruvate Kinase Isoform M2 (PKM2) in Its Dimeric Form. Biochemistry 55:4731–4736. https://doi.org/10.1021/acs.biochem.6b00658

    Article  CAS  PubMed  Google Scholar 

  78. Yan XL, Zhang XB, Ao R et al (2017) Effects of shRNA-Mediated Silencing of PKM2 Gene on Aerobic Glycolysis, Cell Migration, Cell Invasion, and Apoptosis in Colorectal Cancer Cells. J Cell Biochem 118:4792–4803. https://doi.org/10.1002/jcb.26148

    Article  CAS  PubMed  Google Scholar 

  79. Yang W, Zheng Y, **a Y et al (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 14:1295–1304. https://doi.org/10.1038/ncb2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu Z, Zhao X, Huang L et al (2013) Proviral insertion in murine lymphomas 2 (PIM2) oncogene phosphorylates pyruvate kinase M2 (PKM2) and promotes glycolysis in cancer cells. J Biol Chem 288:35406–35416. https://doi.org/10.1074/jbc.M113.508226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu Z, Huang L, Qiao P et al (2016) PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells. Biochem Biophys Res Commun 473:953–958. https://doi.org/10.1016/j.bbrc.2016.03.160

    Article  CAS  PubMed  Google Scholar 

  82. Yuan M, McNae IW, Chen Y et al (2018) An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor. Biochem J 475:1821–1837. https://doi.org/10.1042/bcj20180171

    Article  CAS  PubMed  Google Scholar 

  83. Zhang W, Guo X, Ren J et al (1987) GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis, Environmental pollution (Barking. Essex 295(2022):118708. https://doi.org/10.1016/j.envpol.2021.118708

    Article  CAS  Google Scholar 

  84. Zhang D, Tang Z, Huang H et al (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580. https://doi.org/10.1038/s41586-019-1678-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang W, Zhang X, Huang S et al (2021) FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis. Mol Oncol 15:1466–1485. https://doi.org/10.1002/1878-0261.12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng S, Liu Q, Liu T et al (2021) Posttranslational modification of pyruvate kinase type M2 (PKM2): novel regulation of its biological roles to be further discovered. J Physiol Biochem 77:355–363. https://doi.org/10.1007/s13105-021-00813-0

    Article  CAS  PubMed  Google Scholar 

  87. Zhou Z, Li M, Zhang L et al (2018) Oncogenic Kinase-Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem-like Cells. Can Res 78:2248–2261. https://doi.org/10.1158/0008-5472.Can-17-2726

    Article  CAS  Google Scholar 

  88. Zhou Y, Huang Z, Su J et al (2020) Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment. Int J Cancer 147:139–151. https://doi.org/10.1002/ijc.32756

    Article  CAS  PubMed  Google Scholar 

  89. Zhou S, Li D, **ao D et al (2022) Inhibition of PKM2 Enhances Sensitivity of Olaparib to Ovarian Cancer Cells and Induces DNA Damage. Int J Biol Sci 18:1555–1568. https://doi.org/10.7150/ijbs.62947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Joseph Elliot at the University of Kansas for her assistance with English language and grammatical editing of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81930114 and 82322074), Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B1111100004), the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund (Guangdong-Hong Kong-Macau Joint Laboratory, Grant No. 2020B1212030006).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used. Bingxin Wu, Investigation, Writing—Original Draft. **aojun Teng, Investigation. Huan Lan, Visualization. Zuhui Liang, Visualization, Investigation. Caiyan Wang, Writing—Review & Editing.

Corresponding author

Correspondence to Caiyan Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

Compared with normal tissues, PKM2 is highly expressed in cancer cells and affects the occurrence and development of cancer cells.

The conformational changes of PKM2 affect the survival and development of cancer cells.

Targeted regulation of PKM2 conformational changes is an effective means for the treatment of cancer in the future.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Liang, Z., Lan, H. et al. The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem 80, 261–275 (2024). https://doi.org/10.1007/s13105-024-01007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-024-01007-0

Keywords

Navigation