Log in

Beneficial effects of banana (Musa sp. var. elakki bale) flower and pseudostem on hyperglycemia and advanced glycation end-products (AGEs) in streptozotocin-induced diabetic rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes is a chronic health problem and major cause of death in most of the countries. Diet management plays an important role in controlling diabetes and its complications along with insulin and drugs. We have examined the effect of banana (Musa sp. var. elakki bale) flower and pseudostem on hyperglycemia and advanced glycation end-products (AGEs) in streptozotocin-induced diabetic rats. Our results indicated that banana flower and pseudostem have low glycemic index and have a high content of dietary fiber and antioxidants. Diabetic symptoms like hyperglycemia, polyuria, polyphagia, polydipsia, urine sugar, and body weight were ameliorated in banana flower- and pseudostem-treated rats. Increased glomerular filtration rate in the diabetic group (5.1 ± 0.22 ml/min) was decreased in banana flower-fed (2.5 ± 0.37 ml/min) and pseudostem-fed (3.0 ± 0.45 ml/min) groups and were significant at P < 0.001 and P < 0.01, respectively. Fructosamine and AGEs formed during diabetes were inhibited in treated groups when compared with the diabetic group. The diabetic group showed 11.5 ± 0.64 μg of AGEs/mg protein in kidney, whereas, in banana flower- and pseudostem-fed groups, it was reduced to 9.21 ± 0.32 and 9.29 ± 0.24 μg/mg protein, respectively, and were significant at P < 0.01. These findings suggest that banana flower and pseudostem have anti-diabetic and anti-AGEs properties and are beneficial as food supplements for diabetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson JW (1986) Dietary fiber: Basic and clinical aspects. In: Vahouny GV, Kritchevsky D (eds) Plenum press, New York, pp 361–372

  2. AOAC method 991.43 (1995) Total, insoluble and soluble dietary fiber in food-enzymatic-gravimetric method, MES-TRIS buffer. Official Methods of Analysis, 16th ed. AOAC International, Gaithersburg, MD, pp 71–72

  3. Bandoniene D, Murkovic M, Pfannhauser W, Venskutonis PR, Gruzdiene D (2002) Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and online HPLC-DPPH methods. Eur Food Res Technol 214:143–147

    Article  CAS  Google Scholar 

  4. Baynes JW (1991) Role of oxidative stress in the development of complications in diabetes. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  5. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  6. Berggren AM, Bjorck IME, Nyman EMGL, Eggum BO (1993) Short chain fatty acids content and pH in caecum of rats given various sources of carbohydrates. J Sci Food Agric 63:397–406

    Article  CAS  Google Scholar 

  7. Bieri JG, Stoewsand GS, Briggs GM, Phillips RW, Woodard JC, Knapka JJ (1997) Report of the American Institute of Nutrition Adhoc Committee on standards for nutritional studies. J Nutr 107:1340–1348

    Google Scholar 

  8. Ble-Castillo JL, Aparicio-Trápala MA, Francisco-Luria MU, Córdova-Uscanga R, Rodríguez-Hernández A, Méndez JD, Díaz-Zagoya JC (2010) Effects of native banana starch supplementation on body weight and insulin sensitivity in obese type 2 diabetics. Int J Environ Res Public Health 7:1953–1962

    Article  PubMed  CAS  Google Scholar 

  9. Bowers LD (1980) Kinetic serum creatinine assays I. The role of various factors in determining specificity. Clin Chem 26:551–554

    PubMed  CAS  Google Scholar 

  10. Broadhurst CL, Polansky MM, Anderson RA (2000) Insulin like biological activity of culinary and medicinal plant aqueous extracts in vivo. J Agric Food Chem 48:849–852

    Article  PubMed  CAS  Google Scholar 

  11. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A (1986) Aminoguanidine prevents diabetes induced arterial wall protein cross-linking. Science 232:1629–1632

    Article  PubMed  CAS  Google Scholar 

  12. Chetankumar M, Rachappaji KS, Nandini CD, Sambaiah K, Salimath PV (2002) Modulatory effects of butyric acid - a product of dietary fiber fermentation in experimentally induced diabetic rats. J Nutr Biochem 13:522–527

    Article  Google Scholar 

  13. Cohen MP (2003) Intervention strategies to prevent pathogenetic effects of glycated albumin. Arch Biochem Biophys 419:25–30

    Article  PubMed  CAS  Google Scholar 

  14. Ellis EN, Good BH (1991) Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism 40:1016–1019

    Article  PubMed  CAS  Google Scholar 

  15. Englyst KN, Englyst HN, Hudson GJ, Cole TJ, Cummings JH (1999) Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. Am J Clin Nutr 69:448–454

    PubMed  CAS  Google Scholar 

  16. Engvall E (1980) Enzyme immunoassay ELISA and EMIT. Methods Enzymol 70:419–439

    Article  PubMed  CAS  Google Scholar 

  17. Feillet-Coudray C, Rock E, Coudray C, Grzelkowska K, Azais-Braesco V, Dardevet D, Mazur A (1999) Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta 284:31–43

    Article  PubMed  CAS  Google Scholar 

  18. Forbes JM, Cooper ME, Oldfield MD, Thomas MC (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14:S254–S258

    Article  PubMed  CAS  Google Scholar 

  19. Gao X, Ohlander M, Jeppsson N, Bjork L, Trajkovski V (2000) Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem 48:1485–1490

    Article  PubMed  CAS  Google Scholar 

  20. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    Article  PubMed  CAS  Google Scholar 

  21. Grabley S, Thiericke R (1999) In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Berlin, pp 3–33

    Google Scholar 

  22. Hugget ASG, Nixon DA (1957) Use of glucose oxidase, peroxidase and O- dianisidine in the determination of blood glucose and urinary glucose. Lancet 270:368–370

    Article  Google Scholar 

  23. Ivan AR (2003) Medicinal plants of the world–chemical constituents, traditional modern medicinal uses. Totawa NJ, Humana Press Inc, pp 155–163

    Google Scholar 

  24. Joshi S (2000) Musa paradisiaca L. In: Joshi S (ed) Medicinal plants. New Oxford and IBH publishing Co. pvt Ltd, New Delhi, p 294

    Google Scholar 

  25. Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant in Cavendish banana. J Agric Food Chem 48:844–848

    Article  PubMed  CAS  Google Scholar 

  26. King H, Aubert RE, Herman WH (1998) Global burden of diabetes 1995–2025 prevalence, numerical estimates and projections. Diabetes Care 21:1414–1431

    Article  PubMed  CAS  Google Scholar 

  27. Mallick C, Maiti R, Ghosh D (2006) Anti-diabetogenic effects of separate and composite extract of seed of jamun (Eugenia jambolana) and root of kadali (Musa paradisiaca) in streptozotocin induced diabetic male albino rats: A comparative study. Int J Pharmacol 2:492–503

    Article  Google Scholar 

  28. Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Goetz FC (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74:1143–1155

    Article  PubMed  CAS  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  30. Mokbel MS, Hashinaga F (2005) Antibacterial and antioxidant activities of banana (Musa, AAA cv. cavendish) fruit peel. Am J Biochem Biotech 1:125–131

    Article  Google Scholar 

  31. Murugan P (2010) Tanner’s cassia (Cassia Auriculata) extract prevents hemoglobin glycation and tail tendon collagen properties in experimental diabetic rats. J Cell Tissue Res 10:2109–2114

    Google Scholar 

  32. Nilsson BO (1999) Biological effects of aminoguanidine: an update. Inflamm Res 48:509–515

    Article  PubMed  CAS  Google Scholar 

  33. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  PubMed  CAS  Google Scholar 

  34. Ojewole JA, Adewunmi CO (2003) Hypoglycemic effect of methanolic extract of Musa paradisiaca (Musaceae) green fruits in normal and diabetic mice. Methods Find Exp Clin Pharmacol 25:453–456

    Article  PubMed  CAS  Google Scholar 

  35. Pari L, Umamaheshwari J (2000) Antihyperglycemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytother Res 14:136–138

    Article  PubMed  CAS  Google Scholar 

  36. Pellai N, Aashan TN (1955) Ayurveda Prakashika. S.T. Reddiar and Son, Vidyarambham Press, Quilon, pp 97–115

  37. Pothavorn P, Kitdamrongsont K, Swangpol S, Wongniam S, Atawongsa K, Savasti J, Somana J (2010) Sap phytochemical composition of some bananas in Thailand. J Agric Food Chem 58:8782–8787

    Article  PubMed  CAS  Google Scholar 

  38. Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation end products. Arch Biochem Biophys 419:63–79

    Article  PubMed  CAS  Google Scholar 

  39. Roger NJ (1982) Fructosamine a new approach to the estimation of serum glycosyl protein; An index of diabetic control. Clin Chim Acta 127:87–95

    Google Scholar 

  40. Somani R, Kasture S, Singhai AK (2006) Antidiabetic potential of Butea monosperma in rats. Fitoterapia 77:86–90

    Article  PubMed  Google Scholar 

  41. Suba V, Murugesan T, Rao B, Ghosh L, Pal M, Mandal SC, Saha BP (2004) Antidiabetic potential of Barleria lupulina in rats. Fitotrapia 75:1–4

    Article  CAS  Google Scholar 

  42. Swanston-Flatt SK, Flatt PR, Day C, Bailey CJ (1991) Traditional dietary adjuncts for the treatment of diabetes mellitus. Proc Nutr Soc 50:641–651

    Article  PubMed  CAS  Google Scholar 

  43. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  44. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  PubMed  CAS  Google Scholar 

  45. Trowell HC (1975) Dietary fiber hypothesis of the etiology of diabetes mellitus. Diabetes 24:762–765

    PubMed  CAS  Google Scholar 

  46. Vijayakumar MV, Singh S, Chhipa RR, Bhat MK (2005) The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway. Br J Pharmacol 146:41–48

    Article  PubMed  CAS  Google Scholar 

  47. Vlassara H, Palace MR (2002) Diabetes and advanced glycation end products. J Int Med 251:87–101

    Article  CAS  Google Scholar 

  48. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180

    Article  PubMed  CAS  Google Scholar 

  49. Wolever TMS, Jenkins DJA (1986) Effect of dietary fiber and foods on carbohydrate metabolism. In: Spiller GA (ed) CRC Handbook of Dietary Fiber in Human Nutrition. CRC Press Inc, Florida, pp 87–119

    Google Scholar 

  50. Wuyts N, Lognay G, Sagi L, Waele DD, Swennen R (2005) Secondary metabolites in roots and implications for nematode resistance in banana (Musa spp.), International Symposium, San Jose (CRI), Nov 3–5; INIBAP: Montpellier, France, 238–246

  51. Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidant and anti-glycation of carcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    Article  PubMed  CAS  Google Scholar 

  52. Yokozawa T, Chung HY, He LQ, Qura H (1996) Effectiveness of green tea tannin on rats with chronic renal failure. Biosci Biotechnol Biochem 60:1000–1005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance from Council of Scientific and Industrial Research (CSIR) and the Department of Science and Technology (DST), (SR/SO/HS-OO28/2009), New Delhi, India. The authors thank Dr. V. Prakash, Director, CFTRI, for constant encouragement. Technical assistance provided by Dr. S. Mahadevamma and S. Vishwanatha is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramahans V. Salimath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaskar, J.J., Shobha, M.S., Sambaiah, K. et al. Beneficial effects of banana (Musa sp. var. elakki bale) flower and pseudostem on hyperglycemia and advanced glycation end-products (AGEs) in streptozotocin-induced diabetic rats. J Physiol Biochem 67, 415–425 (2011). https://doi.org/10.1007/s13105-011-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0091-5

Keywords

Navigation