Log in

The construction of multi-granularity generalized one-sided concept lattices

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Formal concept analysis (FCA) is an important analytical tool for cognitive science. The generalized one-sided concept lattice extends the classical concept lattice, which considers the order between the attributes values. The structure of generalized one-sided concept lattice is more complicated than the classical concept lattice. The complexity of constructing generalized one-sided concept lattice is added when the original formal context extends to a multi-granularity formal context. To address this problem, this paper proposes Zoom algorithms based on the granularity trees and the existing generalized one-sided concept lattices. Firstly, the Zoom-in algorithm is designed to construct the generalized one-sided concept lattice when changing the granularity of the attribute value from coarse-granularity to fine-granularity. Then, Zoom-out algorithm is explored to produce the generalized one-sided concept lattice when changing the granularity of the attribute value from fine-granularity to coarse-granularity. Finally, experimental results explain the effectiveness of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin

    Book  Google Scholar 

  2. Xu W, Guo D, Mi J, Qian Y, Zheng K, Ding W (2023) Two-way concept-cognitive learning via concept movement viewpoint. IEEE Trans Neural Netw Learn Syst 34(10):6798–6812. https://doi.org/10.1109/TNNLS.2023.3235800

    Article  MathSciNet  Google Scholar 

  3. Houari A, Yahia SB (2024) A top-k formal concepts-based algorithm for mining positive and negative correlation biclusters of dna microarray data. Int J Mach Learn Cybern 15:941–962. https://doi.org/10.1007/s13042-023-01949-9

    Article  Google Scholar 

  4. Guo D, Xu W (2023) Fuzzy-based concept-cognitive learning: an investigation of novel approach to tumor diagnosis analysis. Inf Sci 639:118998. https://doi.org/10.1016/J.INS.2023.118998

    Article  Google Scholar 

  5. Yuan K, Xu W, Li W, Ding W (2022) An incremental learning mechanism for object classification based on progressive fuzzy three-way concept. Inf Sci 584:127–147

    Article  Google Scholar 

  6. Shao M, Hu Z, Wu W, Liu H (2023) Graph neural networks induced by concept lattices for classification. Int J Approx Reason 154:262–276. https://doi.org/10.1016/J.IJAR.2023.01.001

    Article  MathSciNet  Google Scholar 

  7. Bogdanovic M, Gligorijevic MF, Veljkovic NZ, Puflovic D, Stoimenov L (2023) Cross-portal metadata alignment - connecting open data portals through means of formal concept analysis. Inf Sci 637:118958. https://doi.org/10.1016/J.INS.2023.118958

    Article  Google Scholar 

  8. Poshyvanyk D, Gethers M, Marcus A (2013) Concept location using formal concept analysis and information retrieval. ACM Trans Softw Eng Methodol 21(4):1–34. https://doi.org/10.1145/2377656.2377660

    Article  Google Scholar 

  9. Guo D, Xu W, Qian Y, Ding W (2024) Fuzzy-granular concept-cognitive learning via three-way decision: Performance evaluation on dynamic knowledge discovery. IEEE Trans Fuzzy Syst 32(3):1409–1423. https://doi.org/10.1109/TFUZZ.2023.3325952

    Article  Google Scholar 

  10. Belohlávek R, Vychodil V (2012) Formal concept analysis and linguistic hedges. Int J Gen Syst 41(5):503–532. https://doi.org/10.1080/03081079.2012.685936

    Article  MathSciNet  Google Scholar 

  11. Wu X, Wang J, Shi L, Gao Y, Liu Y (2019) A fuzzy formal concept analysis-based approach to uncovering spatial hierarchies among vague places extracted from user-generated data. Int J Geogr Inf Sci 33(5):991–1016. https://doi.org/10.1080/13658816.2019.1566550

    Article  Google Scholar 

  12. Medina J (2012) Multi-adjoint property-oriented and object-oriented concept lattices. Inf Sci 190:95–106. https://doi.org/10.1016/J.INS.2011.11.016

    Article  MathSciNet  Google Scholar 

  13. Zhi H, Li Y (2023) Attribute granulation in fuzzy formal contexts based on L-fuzzy concepts. Int J Approx Reason 159:108947. https://doi.org/10.1016/J.IJAR.2023.108947

    Article  MathSciNet  Google Scholar 

  14. Pócs J (2012) On possible generalization of fuzzy concept lattices using dually isomorphic retracts. Inf Sci 210:89–98. https://doi.org/10.1016/J.INS.2012.05.004

    Article  MathSciNet  Google Scholar 

  15. Antoni L, Krajci S, Kridlo O (2018) On stability of fuzzy formal concepts over randomized one-sided formal context. Fuzzy Sets Syst 333:36–53. https://doi.org/10.1016/J.FSS.2017.04.006

    Article  MathSciNet  Google Scholar 

  16. Hu Z, Shao M, Liu H, Mi J (2022) Cognitive computing and rule extraction in generalized one-sided formal contexts. Cogn Comput 14:2087–2107. https://doi.org/10.1007/S12559-021-09868-Z

    Article  Google Scholar 

  17. Jaoua A, Elloumi S (2002) Galois connection, formal concepts and galois lattice in real relations: application in a real classifier. J Syst Softw 60(2):149–163. https://doi.org/10.1016/S0164-1212(01)00087-5

    Article  Google Scholar 

  18. Butka P, Pócs J (2013) Generalization of one-sided concept lattices. Comput Inform 32(2):355–370

    MathSciNet  Google Scholar 

  19. Butka P, Pócs J, Pócsová J (2014) Basic theorem for generalized one-sided concept lattices. Appl Math Sci 8:463–468

    Google Scholar 

  20. Butka P, Pócs J, Pócsova J (2014) On equivalence of conceptual scaling and generalized one-sided concept lattices. Inf Sci 259:57–70. https://doi.org/10.1016/J.INS.2013.08.047

    Article  MathSciNet  Google Scholar 

  21. Obiedkov S. A (2012). Modeling preferences over attribute sets in formal concept analysis. In: Formal concept analysis - 10th international conference, ICFCA 2012, Leuven, Belgium, May 7-10, 2012. Proceedings, Springer, 227–243. https://doi.org/10.1007/978-3-642-29892-9_22

  22. Halas R, Pócs J (2015) Generalized one-sided concept lattices with attribute preferences. Inf Sci 303:50–60. https://doi.org/10.1016/J.INS.2015.01.009

    Article  MathSciNet  Google Scholar 

  23. Shao M, Li K (2015). A new type of generalized one-sided concept lattices and its knowledge reduction. In: 2015 international conference on machine learning and cybernetics, ICMLC 2015, Guangzhou, China, July 12-15, 2015, IEEE, 265–270. https://doi.org/10.1109/ICMLC.2015.7340933

  24. Smatana M, Butka P(2016) .Dynamic visualization of generalized one-sided concept lattices and their reductions. In: Information systems architecture and technology: proceedings of 37th international conference on information systems architecture and technology - ISAT 2016 - Part I, Karpacz, Poland, September 18-20, 2016, Springer, 55–66. https://doi.org/10.1007/978-3-319-46583-8_5

  25. Zadeh LA (2008) Toward human level machine intelligence - is it achievable? the need for a paradigm shift. IEEE Comput Intell Mag 3(3):11–22. https://doi.org/10.1109/MCI.2008.926583

    Article  Google Scholar 

  26. Yao W, Han S (2023) A topological approach to rough sets from a granular computing perspective. Inf Sci 627:238–250. https://doi.org/10.1016/J.INS.2023.02.020

    Article  Google Scholar 

  27. Yang J, Wang G, Zhang Q, Chen Y, Xu T (2019) Optimal granularity selection based on cost-sensitive sequential three-way decisions with rough fuzzy sets. Knowl-Based Syst 163:131–144. https://doi.org/10.1016/J.KNOSYS.2018.08.019

    Article  Google Scholar 

  28. Wan Q, Li J, Wei L (2022) Optimal granule combination selection based on multi-granularity triadic concept analysis. Cogn Comput 14(6):1844–1858. https://doi.org/10.1007/S12559-021-09934-6

    Article  Google Scholar 

  29. Gao Y, Chen D, Wang H (2024) Optimal granularity selection based on algorithm stability with application to attribute reduction in rough set theory. Inf Sci 654:119845. https://doi.org/10.1016/j.ins.2023.119845

    Article  Google Scholar 

  30. Zhang X, Huang Y (2023) Optimal scale selection and knowledge discovery in generalized multi-scale decision tables. Int J Approx Reason 161:108983. https://doi.org/10.1016/J.IJAR.2023.108983

    Article  MathSciNet  Google Scholar 

  31. Jiang Z, Yang X, Yu H, Liu D, Wang P, Qian Y (2019) Accelerator for multi-granularity attribute reduction. Knowl-Based Syst 177:145–158. https://doi.org/10.1016/J.KNOSYS.2019.04.014

    Article  Google Scholar 

  32. Hu Z, Shao M, Wu W, Li L (2023) Knowledge acquisition of multi-granularity ordered information systems. Appl Soft Comput 146:110674. https://doi.org/10.1016/J.ASOC.2023.110674

    Article  Google Scholar 

  33. Zou L, Ren S, Sun Y, Yang X (2023) Attribute reduction algorithm of neighborhood rough set based on supervised granulation and its application. Soft Comput 27(3):1565–1582. https://doi.org/10.1007/S00500-022-07454-5

    Article  Google Scholar 

  34. Zhang Q, **ng Y, Wang G (2010) The mutual transformation of conceptual knowledge particles and conceptual information particles. J Shandong Univ (Science Edit) 45(9):1–6. https://doi.org/10.1007/S00500-022-07454-5

    Article  Google Scholar 

  35. Wang Z, Qi J, Shi C, Ren R, Wei L (2023) Multiview granular data analytics based on three-way concept analysis. Appl Intell 53(11):14645–14667. https://doi.org/10.1007/S10489-022-04145-4

    Article  Google Scholar 

  36. **e J, Zhang L, Yang J (2023) A fast algorithm for updating negative concept lattices with increasing the granularity sizes of attributes. Mathematics 11(14):3229. https://doi.org/10.3390/math11143229

    Article  Google Scholar 

  37. Belohlávek R, Sklenar V (2005). Formal concept analysis over attributes with levels of granularity. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), IEEE, 619–624. https://doi.org/10.1109/CIMCA.2005.1631332

  38. Belohlávek R, Baets BD, Konecny J (2014) Granularity of attributes in formal concept analysis. Inf Sci 260:149–170. https://doi.org/10.1016/J.INS.2013.10.021

    Article  MathSciNet  Google Scholar 

  39. Kang X, Miao D (2016) A study on information granularity in formal concept analysis based on concept-bases. Knowl-Based Syst 105:147–159. https://doi.org/10.1016/J.KNOSYS.2016.05.005

    Article  Google Scholar 

  40. Zou L, Zhang Z, Long J (2016) An efficient algorithm for increasing the granularity levels of attributes in formal concept analysis. Expert Syst Appl 46:224–235. https://doi.org/10.1016/J.ESWA.2015.10.026

    Article  Google Scholar 

  41. Li F, Hu B (2017) A new approach of optimal scale selection to multi-scale decision tables. Inf Sci 381:193–208. https://doi.org/10.1016/J.INS.2016.11.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Z., Hu, Z., Lv, M. et al. The construction of multi-granularity generalized one-sided concept lattices. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13042-024-02208-1

Keywords

Navigation