Log in

Interval-valued test cost sensitive attribute reduction related to risk attitude

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Attribute reduction is a typical topic in the field of rough sets. As an extension of this topic, test cost sensitive attribute reduction has garnered considerable attention in recent years, and scholars have made many achievements. However, existing research commonly operates under the assumption that test costs are exact values, disregarding the challenges associated with quantifying test costs accurately in certain real-world contexts. In light of the situation, this paper employs the form of interval values to represent the possible range of test costs and then studies the problem of attribute reduction based on interval-valued test costs. Firstly, a theoretical model for interval-valued test cost sensitive attribute reduction is constructed by utilizing a ranking method of intervals. In this model, some important concepts and properties are discussed. Especially, considering that the risk attitudes of different decision-makers may affect the decision results, an optimization problem related to risk attitude is formulated. Secondly, a backtracking algorithm and a heuristic algorithm are developed for tackling the optimization problem, along with the application of a competition strategy to enhance the heuristic algorithm’s performance. Finally, the performance of the two algorithms is evaluated on multiple UCI datasets, and comparisons are drawn with several state-of-the-art attribute reduction methods. Experimental analyses well illustrate the effectiveness and superiority of the suggested algorithms. It is hoped that this work provides new insights into cost sensitive attribute reduction from the perspective of cost uncertainty and provides a reference for decision-making problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data on which the study is based was accessed from the UCI machine learning repository and is available for downloading through the following link https://archive.ics.uci.edu.

References

  1. Berman O, Sanajian N, Wang J (2017) Location choice and risk attitude of a decision maker. Omega 66:170–181. https://doi.org/10.1016/j.omega.2016.03.002

    Article  Google Scholar 

  2. Bouke MA, Abdullahn A, Frnda J et al (2023) Bukagini: a stability-aware Gini index feature selection algorithm for robust model performance. IEEE Access 11:59,386-59,396. https://doi.org/10.1109/ACCESS.2023.3284975

    Article  Google Scholar 

  3. Chen L, Deng Y (2023) Gdtrset: a generalized decision-theoretic rough sets based on evidence theory. Artif Intell Rev. https://doi.org/10.1007/s10462-023-10605-1

    Article  Google Scholar 

  4. Chen Y, Li Z, Zhang G (2021) Attribute reduction in an incomplete interval-valued decision information system. IEEE Access 9:64,539-64,557. https://doi.org/10.1109/ACCESS.2021.3073709

    Article  Google Scholar 

  5. Dai J, Han H, Hu Q et al (2016) Discrete particle swarm optimization approach for cost sensitive attribute reduction. Knowled-Based Syst 102:116–126. https://doi.org/10.1016/j.knosys.2016.04.002

    Article  Google Scholar 

  6. Fan A, Zhao H, Zhu W (2016) Test-cost-sensitive attribute reduction on heterogeneous data for adaptive neighborhood model. Soft Comput 20(12):4813–4824. https://doi.org/10.1007/s00500-015-1770-x

    Article  Google Scholar 

  7. Ferone A, Georgiev T, Maratea A (2019) Test-cost-sensitive quick reduct. In: Fullér R, Giove S, Masulli F (eds) Fuzzy logic and applications. Springer, Cham, pp 29–42. https://doi.org/10.1007/978-3-030-12544-8_3

    Chapter  Google Scholar 

  8. Guha R, Ghosh M, Kapri S et al (2021) Deluge based genetic algorithm for feature selection. Evol Intell 14:357–367. https://doi.org/10.1007/s12065-019-00218-5

    Article  Google Scholar 

  9. Guo W, Liu T, Dai F et al (2020) An improved whale optimization algorithm for feature selection. Comput Mater Contin 63(1):337–354. https://doi.org/10.32604/cmc.2020.06411

    Article  Google Scholar 

  10. Hu M, Tsang EC, Guo Y et al (2021) A novel approach to attribute reduction based on weighted neighborhood rough sets. Knowl-Based Syst 220(106):908. https://doi.org/10.1016/j.knosys.2021.106908

    Article  Google Scholar 

  11. Hu M, Guo Y, Chen D et al (2023) Attribute reduction based on neighborhood constrained fuzzy rough sets. Knowl-Based Syst 274(110):632. https://doi.org/10.1016/j.knosys.2023.110632

    Article  Google Scholar 

  12. Hu Q, Zhang W (eds) (2010) Research and application of interval number theory. Science Press, Bei**g

    Google Scholar 

  13. Hu S, Miao D, Zhang Z et al (2018) A test cost sensitive heuristic attribute reduction algorithm for partially labeled data. In: Nguyen HS, Ha QT, Li T et al (eds) Rough sets. Springer, Cham, pp 257–269. https://doi.org/10.1007/978-3-319-99368-3_20

    Chapter  Google Scholar 

  14. Jia X, Shang L, Zhou B et al (2016) Generalized attribute reduct in rough set theory. Knowl-Based Syst 91:204–218. https://doi.org/10.1016/j.knosys.2015.05.017

    Article  Google Scholar 

  15. Jia X, Rao Y, Shang L et al (2020) Similarity-based attribute reduction in rough set theory: a clustering perspective. Int J Mach Learn Cybern 11:1047–1060. https://doi.org/10.1007/s13042-019-00959-w

    Article  Google Scholar 

  16. Kelly M, Longjohn R, Nottingham K (n.d.) The UCI machine learning repository. Website https://archive.ics.uci.edu

  17. Kou Y, Lin G, Qian Y et al (2023) A novel multi-label feature selection method with association rules and rough set. Inf Sci 624:299–323. https://doi.org/10.1016/j.ins.2022.12.070

    Article  Google Scholar 

  18. Li D, Zeng W, Yin Q (2020) Ranking interval numbers: a review. J Bei**g Normal Univ (Nat Sci Ed) 56(4):483–492

    MathSciNet  Google Scholar 

  19. Li J, Min F, Zhu W (2015) Fast randomized algorithm for minimal test cost attribute reduction. Int J Reliab Qual Saf Eng 21(6):435–442. https://doi.org/10.1142/S0218539314500284

    Article  Google Scholar 

  20. Liang D, Liu D (2014) Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets. Inf Sci 276:186–203. https://doi.org/10.1016/j.ins.2014.02.054

    Article  Google Scholar 

  21. Liang J, Shi Z, Li D et al (2006) Information entropy, rough entropy and knowledge granulation in incomplete information systems. Int J Gen Syst 35(6):641–654. https://doi.org/10.1080/03081070600687668

    Article  MathSciNet  Google Scholar 

  22. Liao S, Zhu Q, Liang R (2017) An efficient approach of test-cost-sensitive attribute reduction for numerical data. Int J Innov Comput Inf Control 13(6):2099–2111

    Google Scholar 

  23. Liu C, Zhu M, Liu W (2020) Study and implementation of attribute reduction algorithm based on mutual information. J Bei**g Inf Sci Technol Univ 35:38–42

    MathSciNet  Google Scholar 

  24. Liu J, Wang X, Zhang B (2001) The ranking of interval numbers. J Eng Math 18(4):103–1099

    MathSciNet  Google Scholar 

  25. Liu Y, Gong Z, Liu K et al (2023) A q-learning approach to attribute reduction. Appl Intell 53:3750–3765. https://doi.org/10.1007/s10489-022-03696-w

    Article  Google Scholar 

  26. Luo B, Ye Y, Yao N et al (2021) Interval number ranking method based on multiple decision attitudes and its application in decision making. Soft Comput 25:4091–4101. https://doi.org/10.1007/s00500-020-05434-1

    Article  Google Scholar 

  27. Meier A (2022) Emotions and risk attitudes. Am Econ J Appl Econ 14(3):527–558. https://doi.org/10.1257/app.20200164

    Article  MathSciNet  Google Scholar 

  28. Min F, Liu Q (2009) A hierarchical model for test-cost-sensitive decision systems. Inf Sci 179(14):2442–2452. https://doi.org/10.1016/j.ins.2009.03.007

    Article  MathSciNet  Google Scholar 

  29. Min F, Zhu W (2012) Attribute reduction of data with error ranges and test costs. Inf Sci 211:48–67. https://doi.org/10.1016/j.ins.2012.04.031

    Article  MathSciNet  Google Scholar 

  30. Min F, He H, Qian Y et al (2011) Test-cost-sensitive attribute reduction. Inf Sci 181(22):4928–4942. https://doi.org/10.1016/j.ins.2011.07.010

    Article  Google Scholar 

  31. Min F, Zhang Z, Dong J (2018) Ant colony optimization with partial-complete searching for attribute reduction. J Comput Sci 25:170–182. https://doi.org/10.1016/j.jocs.2017.05.007

    Article  MathSciNet  Google Scholar 

  32. Moore R, Lodwick W (2003) Interval analysis and fuzzy set theory. Fuzzy Sets Syst 135(1):5–9. https://doi.org/10.1016/S0165-0114(02)00246-4

    Article  MathSciNet  Google Scholar 

  33. Pan G, Min F, Zhu W (2011) A genetic algorithm to the minimal test cost reduct problem. In: 2011 IEEE international conference on granular computing, pp 539–544. https://doi.org/10.1109/GRC.2011.6122654

  34. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356. https://doi.org/10.1007/BF01001956

    Article  Google Scholar 

  35. Pawlak Z (2002) Rough sets and intelligent data analysis. Inf Sci 147(1):1–12. https://doi.org/10.1016/S0020-0255(02)00197-4

    Article  MathSciNet  Google Scholar 

  36. Qian W, Xu F, Huang J et al (2023) A novel granular ball computing-based fuzzy rough set for feature selection in label distribution learning. Knowl-Based Syst 278(110):898. https://doi.org/10.1016/j.knosys.2023.110898

    Article  Google Scholar 

  37. Sengupta A, Pal TK (2009) On comparing interval numbers: a Study on existing ideas. Springer, Berlin, pp 25–37. https://doi.org/10.1007/978-3-540-89915-0_2

  38. Sun H, Yao W (2010) Comments on methods for ranking interval numbers. J Syst Eng 25(3):18–26

    Google Scholar 

  39. Sun L, Si S, Ding W et al (2023) BSSFS: binary sparrow search algorithm for feature selection. Int J Mach Learn Cybern 14:2633–2657. https://doi.org/10.1007/s13042-023-01788-8

    Article  Google Scholar 

  40. Tan A, Wu W, Tao Y (2017) A set-cover-based approach for the test-cost-sensitive attribute reduction problem. Soft Comput 21:6159–6173. https://doi.org/10.1007/s00500-016-2173-3

    Article  Google Scholar 

  41. Turney P (1995) Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. J Artif Intell Res 2:369–409. https://doi.org/10.1613/jair.120

    Article  Google Scholar 

  42. Wang G, Yu H, Yang D (2002) Decision table reduction based on conditional information entropy. Chin J Comput 25:759–766

    MathSciNet  Google Scholar 

  43. Wang J, Zhou J (2009) Research of reduct features in the variable precision rough set model. Neurocomputing 72(10):2643–2648. https://doi.org/10.1016/j.neucom.2008.09.015

    Article  Google Scholar 

  44. Wang X, Dong C (2009) Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans Fuzzy Syst 17(3):556–567. https://doi.org/10.1109/TFUZZ.2008.924342

    Article  Google Scholar 

  45. **e X, Qin X, Zhou Q et al (2019) A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm. Knowl-Based Syst 186(104):938. https://doi.org/10.1016/j.knosys.2019.104938

    Article  Google Scholar 

  46. Xu Z (2008) Dependent uncertain ordered weighted aggregation operators. Inf Fusion 9(2):310–316. https://doi.org/10.1016/j.inffus.2006.10.008

    Article  Google Scholar 

  47. Xu Z, Min F, Liu J, et al (2012) Ant colony optimization to minimal test cost reduction. In: 2012 IEEE international conference on granular computing, pp 585–590. https://doi.org/10.1109/GrC.2012.6468671

  48. Xu Z, Zhao H, Min F et al (2013) Ant colony optimization with three stages for independent test cost attribute reduction. Math Probl Eng. https://doi.org/10.1155/2013/510167

    Article  Google Scholar 

  49. Yao Y (2004) A partition model of granular computing. In: Peters JF, Skowron A, Grzymała-Busse JW et al (eds) Transactions on rough sets I. Springer, Berlin, pp 232–253. https://doi.org/10.1007/978-3-540-27794-1_11

    Chapter  Google Scholar 

  50. Yao Y (2007) Decision-theoretic rough set models. In: Yao J, Lingras P, Wu W et al (eds) Rough sets and knowledge technology. Springer, Berlin, pp 1–12. https://doi.org/10.1007/978-3-540-72458-2_1

    Chapter  Google Scholar 

  51. Yu B, Hu Y, Kang Y et al (2023) A novel variable precision rough set attribute reduction algorithm based on local attribute significance. Int J Approx Reason 157:88–104. https://doi.org/10.1016/j.ijar.2023.03.002

    Article  MathSciNet  Google Scholar 

  52. Yuan Z, Chen H, **e P et al (2021) Attribute reduction methods in fuzzy rough set theory: an overview, comparative experiments, and new directions. Appl Soft Comput 107(107):353. https://doi.org/10.1016/j.asoc.2021.107353

    Article  Google Scholar 

  53. Zhang L, Zhu P (2022) Generalized fuzzy variable precision rough sets based on bisimulations and the corresponding decision-making. Int J Mach Learn Cybern 13:2313–2344. https://doi.org/10.1007/s13042-022-01527-5

    Article  Google Scholar 

  54. Zhang P, Li T, Luo C et al (2022) AMG-DTRS: adaptive multi-granulation decision-theoretic rough sets. Int J Approx Reason 140:7–30. https://doi.org/10.1016/j.ijar.2021.09.017

    Article  MathSciNet  Google Scholar 

  55. Zhu Q, Liu Z, Li S (2022) Improved algorithm of attribute reduction based on mutual information. J Qindao Univ (Nat Sci Ed) 35:22–26

    Google Scholar 

  56. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46(1):39–59. https://doi.org/10.1016/0022-0000(93)90048-2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China under Grant Nos. 12101289, 11871259 and 62076221, the Natural Science Foundation of Fujian Province under Grant No. 2022J01891, the Institute of Meteorological Big Data-Digital Fujian, and Fujian Key Laboratory of Data Science and Statistics (Minnan Normal University), China.

Author information

Authors and Affiliations

Authors

Contributions

YQ.L. in charge of model creation, programming, algorithm implementation, the comprehensive analysis of the experimental data, and writing essays. SJ.L. formulates the overall research objectives, holds the direction of the research and provides technical guidance as well as project support for writing articles. WY.Y. provides guidance on essay writing. YN.G. is responsible for organizing and sorting out the experimental data. D.W. verifies the experimental results and visualizes them. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shujiao Liao.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Liao, S., Yang, W. et al. Interval-valued test cost sensitive attribute reduction related to risk attitude. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13042-024-02140-4

Keywords

Navigation