Log in

A weighted exponential discriminant analysis through side-information for face and kinship verification using statistical binarized image features

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Side-information based exponential discriminant analysis (SIEDA) is more efficient than side-information based linear discriminant analysis (SILDA) in computing the discriminant vectors because it maximizes the Fisher criterion function. In this paper, we develop a novel criterion, named side-information based weighted exponential discriminant analysis (SIWEDA), that is based on the classical SIEDA method. We reformulate and generalize the classical Fisher criterion function in order to maximize it, with the property to pull as close as possible the intra-class samples (within-class samples), and push and repulse away as far as possible the inter-class samples (between-class samples). Thus, SIWEDA selects the eigenvalues of high significance and eliminate those with less discriminative information. To reduce the feature vector dimensionality and lighten the class intra-variability, we use SIWEDA and within class covariance normalization (WCCN) using the proposed statistical binarized image features (StatBIF). Moreover, we use score fusion strategy to extract the complementarity of different weighting scales of our StatBIF descriptor. We conducted experiments to evaluate the performance of the proposed method under unconstrained environment, using five datasets namely LFW, YTF, Cornell KinFace, UB KinFace and TSKinFace datasets, in the context of matching faces and kinship verification in the wild conditions. The experiments showed that the proposed approach outperforms the current state of the art. Very interestingly, our approach showed superior performance compared to methods based on deep metric learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arashloo SR, Kittler J (2013) Efficient processing of mrfs for unconstrained-pose face recognition. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), pp 1–8. https://doi.org/10.1109/BTAS.2013.6712721

  2. Arashloo SR, Kittler J (2014) Class-specific kernel fusion of multiple descriptors for face verification using multiscale binarised statistical image features. IEEE Trans Inf Forensics Secur 9(12):2100–2109. https://doi.org/10.1109/TIFS.2014.2359587

    Article  Google Scholar 

  3. Ayesha S, Hanif MK, Talib R (2020) Overview and comparative study of dimensionality reduction techniques for high dimensional data. Inf Fusion 59:44–58. https://doi.org/10.1016/j.inffus.2020.01.005

    Article  Google Scholar 

  4. Barkan O, Weill J, Wolf L, Aronowitz H (2013) Fast high dimensional vector multiplication face recognition. In: 2013 IEEE international conference on computer vision, pp 1960–1967. https://doi.org/10.1109/ICCV.2013.246

  5. Bekhouche S, Ouafi A, Dornaika F, Taleb-Ahmed A, Hadid A (2017) Pyramid multi-level features for facial demographic estimation. Expert Syst Appl 80:297–310. https://doi.org/10.1016/j.eswa.2017.03.030

    Article  Google Scholar 

  6. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  7. Best-Rowden L, Bisht S, Klontz JC, Jain AK (2014) Unconstrained face recognition: Establishing baseline human performance via crowdsourcing. In: IEEE International Joint Conference on Biometrics, pp. 1–8 (2014). https://doi.org/10.1109/BTAS.2014.6996296

  8. Chakrabarti A, Rajagopalan AN, Chellappa R (2007) Super-resolution of face images using kernel pca-based prior. IEEE Trans Multimed 9(4):888–892. https://doi.org/10.1109/TMM.2007.893346

    Article  Google Scholar 

  9. Chen D, Cao X, Wen F, Sun J (2013) Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp 3025–3032. https://doi.org/10.1109/CVPR.2013.389

  10. Cui Z, Li W, Xu D, Shan S, Chen X (2013) Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp 3554–3561. https://doi.org/10.1109/CVPR.2013.456

  11. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 886–893. https://doi.org/10.1109/CVPR.2005.177

  12. Dehak N, Kenny PJ, Dehak R, Dumouchel P, Ouellet P (2011) Front-end factor analysis for speaker verification. IEEE Trans Audio Speech Lang Process 19(4):788–798. https://doi.org/10.1109/TASL.2010.2064307

    Article  Google Scholar 

  13. Duan Y, Lu J, Feng J, Zhou J (2017) Learning rotation-invariant local binary descriptor. IEEE Trans Image Process 26(8):3636–3651. https://doi.org/10.1109/TIP.2017.2704661

    Article  MathSciNet  MATH  Google Scholar 

  14. Duan Y, Lu J, Feng J, Zhou J (2018) Context-aware local binary feature learning for face recognition. IEEE Trans Pattern Anal Mach Intell 40(5):1139–1153. https://doi.org/10.1109/TPAMI.2017.2710183

    Article  Google Scholar 

  15. Duan Y, Lu J, Wang Z, Feng J, Zhou J (2017) Learning deep binary descriptor with multi-quantization. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 4857–4866. https://doi.org/10.1109/CVPR.2017.516

  16. Fang R, Tang KD, Snavely N, Chen T (2010) Towards computational models of kinship verification. In: 2010 IEEE international conference on image processing, pp 1577–1580. https://doi.org/10.1109/ICIP.2010.5652590

  17. Guillaumin M, Verbeek J, Schmid C (2009) Is that you? metric learning approaches for face identification. In: 2009 IEEE 12th international conference on computer vision, pp 498–505. https://doi.org/10.1109/ICCV.2009.5459197

  18. Haghighat M, Abdel-Mottaleb M, Alhalabi W (2016) Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst Appl 47:23–34. https://doi.org/10.1016/j.eswa.2015.10.047

    Article  Google Scholar 

  19. Harrell FE Jr (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer, Berlin

    Book  Google Scholar 

  20. Hu J, Lu J, Tan Y (2014) Discriminative deep metric learning for face verification in the wild. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1875–1882. https://doi.org/10.1109/CVPR.2014.242

  21. Hu J, Lu J, Yuan J, Tan YP (2014) Large margin multi-metric learning for face and kinship verification in the wild. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1007/978-3-319-16811-1_17

    Article  Google Scholar 

  22. Huang GB, Jain V, Learned-Miller E (2007) Unsupervised joint alignment of complex images. In: 2007 IEEE 11th international conference on computer vision, pp 1–8. https://doi.org/10.1109/ICCV.2007.4408858

  23. Huang GB, Lee H, Learned-Miller E (2012) Learning hierarchical representations for face verification with convolutional deep belief networks. In: 2012 IEEE conference on computer vision and pattern recognition, pp 2518–2525. https://doi.org/10.1109/CVPR.2012.6247968

  24. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. Rep. 07–49. University of Massachusetts, Amherst

  25. Kannala J, Rahtu E (2012) Bsif: binarized statistical image features. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), pp 1363–1366

  26. Laiadi O, Ouamane A, Benakcha A, Taleb-Ahmed A, Hadid A (2019) Learning multi-view deep and shallow features through new discriminative subspace for bi-subject and tri-subject kinship verification. Appl Intell 49(11):3894–3908

    Article  Google Scholar 

  27. Laiadi O, Ouamane A, Boutellaa E, Benakcha A, Taleb-Ahmed A, Hadid A (2019) Kinship verification from face images in discriminative subspaces of color components. Multimed Tools Appl 78(12):16465–16487

    Article  Google Scholar 

  28. Li H, Hua G (2015) Hierarchical-pep model for real-world face recognition. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 4055–4064. https://doi.org/10.1109/CVPR.2015.7299032

  29. Li H, Hua G, Lin Z, Brandt J, Yang J (2013) Probabilistic elastic matching for pose variant face verification. In: 2013 IEEE conference on computer vision and pattern recognition, pp 3499–3506. https://doi.org/10.1109/CVPR.2013.449

  30. Li H, Hua G, Shen X, Lin Z, Brandt J (2015) Eigen-PEP for video face recognition. Springer, Cham, pp 17–33. https://doi.org/10.1007/978-3-319-16811-1_2

    Book  Google Scholar 

  31. Liu C (2014) Discriminant analysis and similarity measure. Pattern Recognit 47(1):359–367. https://doi.org/10.1016/j.patcog.2013.06.023

    Article  Google Scholar 

  32. Lu GF, Wang Y, Zou J, Wang Z (2018) Matrix exponential based discriminant locality preserving projections for feature extraction. Neural Netw 97:127–136. https://doi.org/10.1016/j.neunet.2017.09.014

    Article  MATH  Google Scholar 

  33. Lu J, Hu J, Tan YP (2017) Discriminative deep metric learning for face and kinship verification. IEEE Trans Image Process 26(9):4269–4282. https://doi.org/10.1109/TIP.2017.2717505

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu J, Zhou X, Tan YP, Shang Y, Zhou J (2014) Neighborhood repulsed metric learning for kinship verification. IEEE Trans Pattern Anal Mach Intell 36(2):331–345. https://doi.org/10.1109/TPAMI.2013.134

    Article  Google Scholar 

  35. Mahpod S, Keller Y (2018) Kinship verification using multiview hybrid distance learning. Comput Vis Image Underst 167:28–36. https://doi.org/10.1016/j.cviu.2017.12.003

    Article  Google Scholar 

  36. Mao Q, Rao Q, Yu Y, Dong M (2017) Hierarchical bayesian theme models for multipose facial expression recognition. IEEE Trans Multimed 19(4):861–873. https://doi.org/10.1109/TMM.2016.2629282

    Article  Google Scholar 

  37. Marsico MD, Nappi M, Riccio D, Wechsler H (2013) Robust face recognition for uncontrolled pose and illumination changes. IEEE Trans Syst Man Cybern Syst 43(1):149–163. https://doi.org/10.1109/TSMCA.2012.2192427

    Article  Google Scholar 

  38. Meina K, Shan S, Chen X (2011) Side-information based linear discriminant analysis for face recognition. In: Proc. BMVC, pp 125.1–125.0. https://doi.org/10.5244/C.25.125

  39. Méndez-Váizquez, H., Martínez-Díaz, Y., Chai, Z.: Volume structured ordinal features with background similarity measure for video face recognition. In: 2013 International conference on biometrics (ICB), pp 1–6 (2013). https://doi.org/10.1109/ICB.2013.6612990

  40. Nowak E, Jurie F (2007) Learning visual similarity measures for comparing never seen objects. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8. https://doi.org/10.1109/CVPR.2007.382969

  41. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  42. Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. Springer, Berlin, pp 236–243. https://doi.org/10.1007/978-3-540-69905-7_27

    Book  Google Scholar 

  43. Ouamane A, Bengherabi M, Hadid A, Cheriet M (2015) Side-information based exponential discriminant analysis for face verification in the wild. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), vol 02, pp 1–6. https://doi.org/10.1109/FG.2015.7284837

  44. Ouamane A, Chouchane A, Boutellaa E, Belahcene M, Bourennane S, Hadid A (2017) Efficient tensor-based 2d+3d face verification. IEEE Trans Inf Forensics Secur 12(11):2751–2762. https://doi.org/10.1109/TIFS.2017.2718490

    Article  Google Scholar 

  45. Ouamane A, Messaoud B, Guessoum A, Hadid A, Cheriet M (2014) Multi scale multi descriptor local binary features and exponential discriminant analysis for robust face authentication. In: 2014 IEEE international conference on Iimage processing (ICIP), pp 313–317. https://doi.org/10.1109/ICIP.2014.7025062

  46. Pang Y, Wang S, Yuan Y (2014) Learning regularized lda by clustering. IEEE Trans Neural Netw Learn Syst 25(12):2191–2201. https://doi.org/10.1109/TNNLS.2014.2306844

    Article  Google Scholar 

  47. Pinto N, DiCarlo JJ, Cox DD (2009) How far can you get with a modern face recognition test set using only simple features? In: 2009 IEEE conference on computer vision and pattern recognition, pp 2591–2598. https://doi.org/10.1109/CVPR.2009.5206605

  48. Qin X, Liu D, Wang D (2018) Heterogeneous similarity learning for more practical kinship verification. Neural Process Lett 47(3):1253–1269. https://doi.org/10.1007/s11063-017-9694-3

    Article  Google Scholar 

  49. Qin X, Tan X, Chen S (2015) Tri-subject kinship verification: Understanding the core of a family. IEEE Trans Multimed 17(10):1855–1867. https://doi.org/10.1109/TMM.2015.2461462

    Article  Google Scholar 

  50. Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264. https://doi.org/10.1109/34.75512

    Article  Google Scholar 

  51. Sanderson C, Lovell BC (2009) Multi-region probabilistic histograms for robust and scalable identity Inference. Springer, Berlin, pp 199–208. https://doi.org/10.1007/978-3-642-01793-3_21

    Book  Google Scholar 

  52. Simonyan K, Parkhi OM, Vedaldi A, Zisserman A (2013) Fisher vector faces in the wild. BMVC 2(3):4

    Google Scholar 

  53. Swets DL, Weng JJ (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836. https://doi.org/10.1109/34.531802

    Article  Google Scholar 

  54. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1701–1708. https://doi.org/10.1109/CVPR.2014.220

  55. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings 1991 IEEE computer society conference on computer vision and pattern recognition, pp 586–591. https://doi.org/10.1109/CVPR.1991.139758

  56. Wei W, Dai H, Liang W (2020) Exponential sparsity preserving projection with applications to image recognition. Pattern Recognit. https://doi.org/10.1016/j.patcog.2020.107357

    Article  Google Scholar 

  57. Wolf L, Hassner T, Maoz I (2011) Face recognition in unconstrained videos with matched background similarity. CVPR 2011:529–534. https://doi.org/10.1109/CVPR.2011.5995566

    Article  Google Scholar 

  58. Wolf L, Hassner T, Taigman Y (2008) Descriptor based methods in the wild. In: Real-life images workshop at the European conference on computer vision (ECCV). http://www.openu.ac.il/home/hassner/projects/Patchlbp

  59. Wu G, Feng T, Zhang L, Yang M (2017) Inexact implementation using krylov subspace methods for large scale exponential discriminant analysis with applications to high dimensionality reduction problems. Pattern Recognit 66:328–341. https://doi.org/10.1016/j.patcog.2016.08.020

    Article  Google Scholar 

  60. Wu X, Boutellaa E, López MB, Feng X, Hadid A (2016) On the usefulness of color for kinship verification from face images. In: 2016 IEEE International workshop on information forensics and security (WIFS), pp 1–6. https://doi.org/10.1109/WIFS.2016.7823901

  61. **a S, Shao M, Luo J, Fu Y (2012) Understanding kin relationships in a photo. IEEE Trans Multimed 14(4):1046–1056. https://doi.org/10.1109/TMM.2012.2187436

    Article  Google Scholar 

  62. Yan H, Lu J, Deng W, Zhou X (2014) Discriminative multimetric learning for kinship verification. IEEE Trans Inf Forensics Secur 9(7):1169–1178. https://doi.org/10.1109/TIFS.2014.2327757

    Article  Google Scholar 

  63. Yan H, Lu J, Zhou X (2015) Prototype-based discriminative feature learning for kinship verification. IEEE Trans Cybern 45(11):2535–2545. https://doi.org/10.1109/TCYB.2014.2376934

    Article  Google Scholar 

  64. Yu W, Zhao C (2018) Sparse exponential discriminant analysis and its application to fault diagnosis. IEEE Trans Ind Electron 65(7):5931–5940. https://doi.org/10.1109/TIE.2017.2782232

    Article  Google Scholar 

  65. Yuan S, Mao X (2018) Exponential elastic preserving projections for facial expression recognition. Neurocomputing 275:711–724. https://doi.org/10.1016/j.neucom.2017.08.067

    Article  Google Scholar 

  66. Zhang T, Fang B, Tang YY, Shang Z, Xu B (2010) Generalized discriminant analysis: a matrix exponential approach. IEEE Trans Syst Man Cybern Part B 40(1):186–197. https://doi.org/10.1109/TSMCB.2009.2024759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Laiadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laiadi, O., Ouamane, A., Benakcha, A. et al. A weighted exponential discriminant analysis through side-information for face and kinship verification using statistical binarized image features. Int. J. Mach. Learn. & Cyber. 12, 171–185 (2021). https://doi.org/10.1007/s13042-020-01163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01163-x

Keywords

Navigation