Log in

Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic stroke (IS) accounts for most of the cases of stroke onset, and due to short therapeutic time window for thrombolysis and numerous limited treatment measures and contraindications, lots of patients cannot receive satisfying therapeutic effects resulting in high disability and mortality worldly. In recent years, extracellular vesicles (EVs), as nanosized membrane-structured vesicles secreted from almost all cells, especially from stem/progenitor cells, have been reported to exert significant beneficial effects on IS from multiple approaches and notably ameliorate neurological outcome. Moreover, based on nano-size and lipid bilayer structure, EVs can easily penetrate the blood–brain barrier and migrate into the brain. In this review, we mainly systematically summarize the therapeutic effects of EVs on IS and explore their potential applications. Simultaneously, we also discuss administration routines, dosages, experimental observation time, and some key issues of EV application during IS treatment. It contributes to a comprehensive understanding of the progress of EV treatment for IS and providing confident evidence for further EV clinical application widely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization. CHAPTER 3. Neurological disorders: a public health approah. in: neurological disorders: Public Health Challenges. 2016. https://www.who.int/mental_health/neurology/chapter_3_b_neuro_disorders_public_h_challenges.pdf?ua=1. Accessed 10 June 2020.

  2. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500. https://doi.org/10.1038/nm1735.

    Article  CAS  PubMed  Google Scholar 

  3. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98. https://doi.org/10.1016/j.neuron.2010.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prabhakaran S, Ruff I, Bernstein RA. Acute stroke intervention: a systematic review. JAMA. 2015;313(14):1451–62. https://doi.org/10.1001/jama.2015.3058.

    Article  CAS  PubMed  Google Scholar 

  5. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, et al. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(2):581–641. https://doi.org/10.1161/STR.0000000000000086.

    Article  PubMed  Google Scholar 

  6. Phan K, Dmytriw AA, Lloyd D, Maingard JM, Kok HK, Chandra RV, et al. Direct endovascular thrombectomy and bridging strategies for acute ischemic stroke: a network meta-analysis. J Neurointerv Surg. 2019;11(5):443–9. https://doi.org/10.1136/neurintsurg-2018-014260.

    Article  PubMed  Google Scholar 

  7. Balodis A, Radzina M, Miglane E, Rudd A, Millers A, Savlovskis J, et al. Endovascular thrombectomy in anterior circulation stroke and clinical value of bridging with intravenous thrombolysis. Acta Radiol. 2019;60(3):308–14. https://doi.org/10.1177/0284185118780897.

    Article  PubMed  Google Scholar 

  8. Webb RL, Kaiser EE, Scoville SL, Thompson TA, Fatima S, Pandya C, et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl Stroke Res. 2018;9(5):530–9. https://doi.org/10.1007/s12975-017-0599-2.

    Article  CAS  PubMed  Google Scholar 

  9. Ryu B, Sekine H, Homma J, Kobayashi T, Kobayashi E, Kawamata T, et al. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. J Neurosurg. 2019;132(2):442–55. https://doi.org/10.3171/2018.11.JNS182331.

    Article  PubMed  Google Scholar 

  10. Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A. A mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol. 2019;311:182–93. https://doi.org/10.1016/j.expneurol.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  11. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. https://doi.org/10.1016/j.stem.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  12. Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22. https://doi.org/10.1016/j.scr.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  13. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10. https://doi.org/10.1159/000345615.

    Article  PubMed  Google Scholar 

  14. Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC. Exosomes and stem cells in degenerative disease diagnosis and therapy. cell transplant. 2018;27(3):349–63. https://doi.org/10.1177/0963689717723636.

  15. Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: progress and challenges. Front Cell Dev Biol. 2020;8:665. https://doi.org/10.3389/fcell.2020.00665.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eleuteri S, Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int J Mol Sci. 2019;20(18). https://doi.org/10.3390/ijms20184597.

  17. Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388(10046):787–96. https://doi.org/10.1016/s0140-6736(16)30513-x.

    Article  PubMed  Google Scholar 

  18. Díez-Tejedor E, Gutiérrez-Fernández M, Martínez-Sánchez P, Rodríguez-Frutos B, Ruiz-Ares G, Lara ML, et al. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis. 2014;23(10):2694–700. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011.

    Article  PubMed  Google Scholar 

  19. Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA, Mays RW. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int J Stroke. 2014;9(3):381–6. https://doi.org/10.1111/ijs.12065.

    Article  PubMed  Google Scholar 

  20. Mousavinejad M, Andrews PW, Shoraki EK. Current biosafety considerations in stem cell therapy. Cell J. 2016;18(2):281–7.

    PubMed  PubMed Central  Google Scholar 

  21. Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The dark side of the force - constraints and complications of cell therapies for stroke. Front Neurol. 2015;6:155. https://doi.org/10.3389/fneur.2015.00155.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol. 2012;3:359. https://doi.org/10.3389/fphys.2012.00359.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cai Y, Liu W, Lian L, Xu Y, Bai X, Xu S, et al. Stroke treatment: is exosome therapy superior to stem cell therapy? Biochimie. 2020. https://doi.org/10.1016/j.biochi.2020.09.025.

    Article  PubMed  Google Scholar 

  24. Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev. 2020;62:101106. https://doi.org/10.1016/j.arr.2020.101106.

    Article  CAS  PubMed  Google Scholar 

  25. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478). https://doi.org/10.1126/science.aau6977.

  26. Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of exosomes in central nervous system diseases. Front Mol Neurosci. 2019;12:240. https://doi.org/10.3389/fnmol.2019.00240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  28. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

    Article  CAS  PubMed  Google Scholar 

  29. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78. https://doi.org/10.1016/0092-8674(83)90040-5.

    Article  CAS  PubMed  Google Scholar 

  30. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

    Article  CAS  Google Scholar 

  31. Grenier D, Mayrand D. Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun. 1987;55(1):111–7. https://doi.org/10.1128/iai.55.1.111-117.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72. https://doi.org/10.1084/jem.183.3.1161.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz Z, Sela J, Ramirez V, Amir D, Boyan BD. Changes in extracellular matrix vesicles during healing of rat tibial bone: a morphometric and biochemical study. Bone. 1989;10(1):53–60. https://doi.org/10.1016/8756-3282(89)90147-6.

    Article  CAS  PubMed  Google Scholar 

  34. Amir D, Schwartz Z, Sela J, Weinberg H. The relationship between extracellular matrix vesicles and the calcifying front on the 21st day after injury to rat tibial bone. Clin Orthop Relat Res. 1988;230:289–95.

    Article  CAS  Google Scholar 

  35. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.

    Article  CAS  Google Scholar 

  36. Thébaud B, Stewart DJ. Exosomes: cell garbage can, therapeutic carrier, or trojan horse? Circulation. 2012;126(22):2553–5. https://doi.org/10.1161/circulationaha.112.146738.

    Article  PubMed  Google Scholar 

  37. Li X, Zeng Z, Wang J, Wu Y, Chen W, Zheng L, et al. MicroRNA-9 and breast cancer. Biomed Pharmacother. 2020;122:109687. https://doi.org/10.1016/j.biopha.2019.109687.

    Article  CAS  PubMed  Google Scholar 

  38. Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. Versatile roles of extracellular vesicles in cancer. J Clin Invest. 2016;126(4):1163–72. https://doi.org/10.1172/jci81130.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. https://doi.org/10.1038/ncb1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen MA, Karunakaran D, Geoffrion M, Cheng HS, Tandoc K, Perisic Matic L, et al. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arterioscler Thromb Vasc Biol. 2018;38(1):49–63. https://doi.org/10.1161/atvbaha.117.309795.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Chopp M, Liu XS, Katakowski M, Wang X, Tian X, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol. 2017;54(4):2659–73. https://doi.org/10.1007/s12035-016-9851-0.

    Article  CAS  PubMed  Google Scholar 

  42. Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, et al. MiR-126 Mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke. 2019;50(10):2865–74. https://doi.org/10.1161/STROKEAHA.119.025371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barile L, Moccetti T, Marbán E, Vassalli G. Roles of exosomes in cardioprotection. Eur Heart J. 2017;38(18):1372–9. https://doi.org/10.1093/eurheartj/ehw304.

    Article  CAS  PubMed  Google Scholar 

  44. Jung KH, Chu K, Lee ST, Park HK, Bahn JJ, Kim DH, et al. Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol. 2009;66(2):191–9. https://doi.org/10.1002/ana.21681.

    Article  CAS  PubMed  Google Scholar 

  45. **n H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5. https://doi.org/10.1038/jcbfm.2013.152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. **n H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46. https://doi.org/10.1002/stem.1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012;3:228. https://doi.org/10.3389/fphys.2012.00228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toh WS, Lai RC, Zhang B, Lim SK. MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans. 2018;46(4):843–53. https://doi.org/10.1042/bst20180079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun R, Liu Y, Lu M, Ding Q, Wang P, Zhang H, et al. ALIX increases protein content and protective function of iPSC-derived exosomes. J Mol Med (Berl). 2019;97(6):829–44. https://doi.org/10.1007/s00109-019-01767-z.

    Article  CAS  Google Scholar 

  50. Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4(10):1131–43. https://doi.org/10.5966/sctm.2015-0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song Y, Li Z, He T, Qu M, Jiang L, Li W, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics. 2019;9(10):2910–23. https://doi.org/10.7150/thno.30879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49. https://doi.org/10.1016/j.biomaterials.2017.10.012.

    Article  CAS  PubMed  Google Scholar 

  53. Gilligan KE, Dwyer RM. Engineering exosomes for cancer therapy. Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061122.

  54. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008.

    Article  Google Scholar 

  55. Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10.

    Article  Google Scholar 

  56. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3(1):9.

    Article  Google Scholar 

  57. Yue KY, Zhang PR, Zheng MH, Cao XL, Cao Y, Zhang YZ, et al. Neurons can upregulate Cav-1 to increase intake of endothelial cells-derived extracellular vesicles that attenuate apoptosis via miR-1290. Cell Death Dis. 2019;10(12):869. https://doi.org/10.1038/s41419-019-2100-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Payabvash S, Taleb S, Benson JC, McKinney AM. Acute ischemic stroke infarct topology: association with lesion volume and severity of symptoms at admission and discharge. AJNR Am J Neuroradiol. 2017;38(1):58–63. https://doi.org/10.3174/ajnr.A4970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong DC, Yenari MA, Albers GW, O’Brien M, Marks MP, Moseley ME. Correlation of perfusion and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology. 1998;50(4):864–70.

    Article  CAS  Google Scholar 

  60. Mahdavipour M, Hassanzadeh G, Seifali E, Mortezaee K, Aligholi H, Shekari F, et al. Effects of neural stem cell-derived extracellular vesicles on neuronal protection and functional recovery in the rat model of middle cerebral artery occlusion. Cell Biochem Funct. 2019. https://doi.org/10.1002/cbf.3484.

    Article  PubMed  Google Scholar 

  61. Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res. 2019;11(2):780–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Webb RL, Kaiser EE, Jurgielewicz BJ, Spellicy S, Scoville SL, Thompson TA, et al. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke. 2018;49(5):1248–56. https://doi.org/10.1161/STROKEAHA.117.020353.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lapchak PA, Boitano PD, de Couto G, Marban E. Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits. Exp Neurol. 2018;307:109–17. https://doi.org/10.1016/j.expneurol.2018.06.007.

    Article  CAS  PubMed  Google Scholar 

  64. Otero-Ortega L, Laso-Garcia F, Frutos MCG, Diekhorst L, Martinez-Arroyo A, Alonso-Lopez E, et al. Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell Res Ther. 2020;11(1):70. https://doi.org/10.1186/s13287-020-01601-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Otero-Ortega L, Laso-García F, Gómez-de Frutos MDC, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B, et al. White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci Rep. 2017;7:44433. https://doi.org/10.1038/srep44433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng Y, He R, Wang P, Shi Y, Zhao L, Liang J. Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomater Sci. 2019;7(5):2037–49. https://doi.org/10.1039/c8bm01449c.

    Article  CAS  PubMed  Google Scholar 

  67. Nalamolu KR, Venkatesh I, Mohandass A, Klopfenstein JD, Pinson DM, Wang DZ, et al. Exosomes secreted by the cocultures of normal and oxygen-glucose-deprived stem cells improve post-stroke outcome. Neuromolecular Med. 2019;21(4):529–39. https://doi.org/10.1007/s12017-019-08540-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Y, Ren C, Li H, Jiang F, Wang L, **a C, et al. Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. NeuroReport. 2019;30(12):834–41. https://doi.org/10.1097/WNR.0000000000001280.

    Article  CAS  PubMed  Google Scholar 

  69. Lee JY, Kim E, Choi S-M, Kim D-W, Kim KP, Lee I, et al. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep. 2016;6:33038. https://doi.org/10.1038/srep33038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Safakheil M, Safakheil H. The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci. 2020;70(5):724–37. https://doi.org/10.1007/s12031-020-01483-1.

    Article  CAS  PubMed  Google Scholar 

  71. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32(2):200–19. https://doi.org/10.1016/j.nbd.2008.08.005.

    Article  CAS  PubMed  Google Scholar 

  72. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018;163–164:144–71. https://doi.org/10.1016/j.pneurobio.2017.10.001.

    Article  CAS  PubMed  Google Scholar 

  73. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17. https://doi.org/10.1016/j.neuron.2014.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu B, Zhang Y, Du XF, Li J, Zi HX, Bu JW, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27(7):882–97. https://doi.org/10.1038/cr.2017.62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang C, Borger V, Sardari M, Murke F, Skuljec J, Pul R et al. Mesenchymal stromal cell-derived small extracellular vesicles induce ischemic neuroprotection by modulating leukocytes and specifically neutrophils. Stroke. 2020:STROKEAHA119028012. https://doi.org/10.1161/STROKEAHA.119.028012.

  76. Chen KH, Chen CH, Wallace CG, Yuen CM, Kao GS, Chen YL, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget. 2016;7(46):74537–56. https://doi.org/10.18632/oncotarget.12902.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38(2 Suppl):770–3. https://doi.org/10.1161/01.STR.0000251441.89665.bc.

    Article  PubMed  Google Scholar 

  78. Ruhnau J, Schulze J, Dressel A, Vogelgesang A. Thrombosis, Neuroinflammation, and poststroke infection: the multifaceted role of neutrophils in stroke. J Immunol Res. 2017;2017:5140679. https://doi.org/10.1155/2017/5140679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation. 2019;16(1):178. https://doi.org/10.1186/s12974-019-1571-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab. 2012;32(9):1677–98. https://doi.org/10.1038/jcbfm.2012.88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu Y, Zhou H, **ong Y, Liu J. Exosomal miR-199a-5p derived from endothelial cells attenuates apoptosis and inflammation in neural cells by inhibiting endoplasmic reticulum stress. Brain Res. 2020;1726:146515. https://doi.org/10.1016/j.brainres.2019.146515.

    Article  CAS  PubMed  Google Scholar 

  82. Li C, Fei K, Tian F, Gao C, Yang S. Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating miR-21-3p/MAT2B signaling transduction. Croat Med J. 2019;60(5):439–48.

    Article  CAS  Google Scholar 

  83. Pei X, Li Y, Zhu L, Zhou Z. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp Cell Res. 2019;382(2):111474. https://doi.org/10.1016/j.yexcr.2019.06.019.

    Article  CAS  PubMed  Google Scholar 

  84. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. 2019;13:71. https://doi.org/10.1186/s13036-019-0193-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216. https://doi.org/10.1186/s12974-019-1602-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4(10):1131–43. https://doi.org/10.5966/sctm.2015-0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu B, Chen S, Zou M, He Z, Shao S, Liu B. Effect of extracellular vesicles on neural functional recovery and immunologic suppression after rat cerebral apoplexy. Cell Physiol Biochem. 2016;40(1–2):155–62.

    Article  CAS  Google Scholar 

  88. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.

    Article  CAS  Google Scholar 

  89. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9. https://doi.org/10.1161/STROKEAHA.108.531632.

    Article  PubMed  Google Scholar 

  90. **ao B, Chai Y, Lv S, Ye M, Wu M, **e L, et al. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int J Mol Med. 2017;40(4):1201–9. https://doi.org/10.3892/ijmm.2017.3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. El Bassit G, Patel RS, Carter G, Shibu V, Patel AA, Song S, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 Cells. Endocrinology. 2017;158(1):183–95. https://doi.org/10.1210/en.2016-1819.

    Article  CAS  PubMed  Google Scholar 

  92. Wang J, Chen S, Ma X, Cheng C, **ao X, Chen J, et al. Effects of endothelial progenitor cell-derived microvesicles on hypoxia/reoxygenation-induced endothelial dysfunction and apoptosis. Oxid Med Cell Longev. 2013;2013:572729. https://doi.org/10.1155/2013/572729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. **ao Y, Geng F, Wang G, Li X, Zhu J, Zhu W. Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27519.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang P, Shao B-Z, Deng Z, Chen S, Yue Z, Miao C-Y. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163–4. https://doi.org/10.1016/j.pneurobio.2018.01.001.

  95. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.

    Article  CAS  Google Scholar 

  96. Pei X, Li Y, Zhu L, Zhou Z. Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle. 2020;19(8):906–17. https://doi.org/10.1080/15384101.2020.1731649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Song S, Tan J, Miao Y, Zhang Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol. 2018;233(5):3867–74. https://doi.org/10.1002/jcp.26137.

    Article  CAS  PubMed  Google Scholar 

  98. Ergul A, Alhusban A, Fagan SC. Angiogenesis: a harmonized target for recovery after stroke. Stroke. 2012;43(8):2270–4. https://doi.org/10.1161/STROKEAHA.111.642710.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yang Y, Cai Y, Zhang Y, Liu J, Xu Z. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through microRNA-181b/TRPM7 axis. J Mol Neurosci. 2018;65(1):74–83. https://doi.org/10.1007/s12031-018-1071-9.

    Article  CAS  PubMed  Google Scholar 

  100. Tian Y, Zhu P, Liu S, ** Z, Li D, Zhao H, et al. IL-4-polarized BV2 microglia cells promote angiogenesis by secreting exosomes. Adv Clin Exp Med. 2019;28(4):421–30. https://doi.org/10.17219/acem/91826.

    Article  PubMed  Google Scholar 

  101. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.

    Article  CAS  Google Scholar 

  102. Yan J, Zhang Z, Shi H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci. 2012;69(1):115–28. https://doi.org/10.1007/s00018-011-0731-5.

    Article  CAS  PubMed  Google Scholar 

  103. Bond AM, Ming G-L, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95. https://doi.org/10.1016/j.stem.2015.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hira K, Ueno Y, Tanaka R, Miyamoto N, Yamashiro K, Inaba T, et al. Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D2 synthase. Stroke. 2018;49(10):2483–94. https://doi.org/10.1161/STROKEAHA.118.021272.

    Article  CAS  PubMed  Google Scholar 

  105. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83. https://doi.org/10.1586/epr.09.17.

    Article  CAS  PubMed  Google Scholar 

  106. Luo X, Wang W, Li D, Xu C, Liao B, Li F, et al. Plasma exosomal miR-450b-5p as a possible biomarker and therapeutic target for transient ischaemic attacks in rats. J Mol Neurosci. 2019;69(4):516–26. https://doi.org/10.1007/s12031-019-01341-9.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou J, Chen L, Chen B, Huang S, Zeng C, Wu H, et al. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol. 2018;18(1):198. https://doi.org/10.1186/s12883-018-1196-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang W, Li DB, Li RY, Zhou X, Yu DJ, Lan XY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p. Cerebrovasc Dis. 2018;45(5–6):204–12. https://doi.org/10.1159/000488365.

    Article  CAS  PubMed  Google Scholar 

  109. Kerr N, Garcia-Contreras M, Abbassi S, Mejias NH, Desousa BR, Ricordi C, et al. Inflammasome proteins in serum and serum-derived extracellular vesicles as biomarkers of stroke. Front Mol Neurosci. 2018;11:309. https://doi.org/10.3389/fnmol.2018.00309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li DB, Liu JL, Wang W, Li RY, Yu DJ, Lan XY, et al. Plasma exosomal miR-422a and miR-125b-2-3p Serve as biomarkers for ischemic stroke. Curr Neurovasc Res. 2017;14(4):330–7. https://doi.org/10.2174/1567202614666171005153434.

    Article  CAS  PubMed  Google Scholar 

  111. Chen Y, Song Y, Huang J, Qu M, Zhang Y, Geng J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol. 2017;8:57. https://doi.org/10.3389/fneur.2017.00057.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS ONE. 2016;11(9):e0163645. https://doi.org/10.1371/journal.pone.0163645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen F, Du Y, Esposito E, Liu Y, Guo S, Wang X, et al. Effects of focal cerebral ischemia on exosomal versus serum miR126. Transl Stroke Res. 2015;6(6):478–84. https://doi.org/10.1007/s12975-015-0429-3.

    Article  CAS  PubMed  Google Scholar 

  114. Luo X, Wang W, Li D, Xu C, Liao B, Li F, et al. Plasma exosomal miR-450b-5p as a Possible biomarker and therapeutic target for transient ischaemic attacks in rats. J Mol Neurosci. 2019;69(4):516–26. https://doi.org/10.1007/s12031-019-01341-9.

    Article  CAS  PubMed  Google Scholar 

  115. Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 2014;8(1):483–94. https://doi.org/10.1021/nn404945r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang H, Wu J, Wu J, Fan Q, Zhou J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnol. 2019;17(1):29. https://doi.org/10.1186/s12951-019-0461-7.

    Article  Google Scholar 

  117. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://doi.org/10.1038/nbt.1807.

    Article  CAS  PubMed  Google Scholar 

  118. Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017;7:278–87. https://doi.org/10.1016/j.omtn.2017.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim M, Kim G, Hwang DW, Lee M. Delivery of high mobility group Box-1 siRNA using brain-targeting exosomes for ischemic stroke therapy. J Biomed Nanotechnol. 2019;15(12):2401–12. https://doi.org/10.1166/jbn.2019.2866.

    Article  CAS  PubMed  Google Scholar 

  120. Kim HY, Kim TJ, Kang L, Kim YJ, Kang MK, Kim J, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials. 2020;243:119942. https://doi.org/10.1016/j.biomaterials.2020.119942.

    Article  CAS  PubMed  Google Scholar 

  121. Kolosnjaj-Tabi J, Lartigue L, Javed Y, Luciani N, Pellegrino T, Wilhelm C, et al. Biotransformations of magnetic nanoparticles in the body. Nano Today. 2016;11(3):280–4. https://doi.org/10.1016/j.nantod.2015.10.001.

    Article  CAS  Google Scholar 

  122. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85. https://doi.org/10.1016/j.cell.2017.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tuo QZ, Lei P, Jackman KA, Li XL, **ong H, Li XL, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22(11):1520–30. https://doi.org/10.1038/mp.2017.171.

    Article  CAS  PubMed  Google Scholar 

  125. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72. https://doi.org/10.1038/jcbfm.2012.126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu Y, Fu N, Su J, Wang X, Li X. Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/caspase-3. Biomed Res Int. 2019;2019:4273290. https://doi.org/10.1155/2019/4273290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang J, Gao F, Zhang Y, Liu Y, Zhang D. Buyang Huanwu decoction (BYHWD) enhances angiogenic effect of mesenchymal stem cell by upregulating VEGF expression after focal cerebral ischemia. J Mol Neurosci. 2015;56(4):898–906. https://doi.org/10.1007/s12031-015-0539-0.

    Article  CAS  PubMed  Google Scholar 

  128. Jiang M, Wang H, ** M, Yang X, Ji H, Jiang Y, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem. 2018;47(2):864–78. https://doi.org/10.1159/000490078.

    Article  CAS  PubMed  Google Scholar 

  129. **n H, Wang F, Li Y, Lu Q-E, Cheung WL, Zhang Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243–57. https://doi.org/10.3727/096368916X693031.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sun X, Jung JH, Arvola O, Santoso MR, Giffard RG, Yang PC, et al. Stem cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Front Cell Neurosci. 2019;13:394. https://doi.org/10.3389/fncel.2019.00394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nalamolu KR, Venkatesh I, Mohandass A, Klopfenstein JD, Pinson DM, Wang DZ, et al. Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cell Physiol Biochem. 2019;52(6):1280–91. https://doi.org/10.33594/000000090.

    Article  CAS  PubMed  Google Scholar 

  132. Zheng X, Zhang L, Kuang Y, Venkataramani V, ** F, Hein K et al. Extracellular vesicles derived from neural progenitor cells––a preclinical evaluation for stroke treatment in mice. translational stroke research. 2020. https://doi.org/10.1007/s12975-020-00814-z.

  133. Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84. https://doi.org/10.1016/j.jbiotec.2013.03.013.

    Article  CAS  PubMed  Google Scholar 

  134. Haney MJ, Zhao Y, ** YS, Batrakova EV. Extracellular vesicles as drug carriers for enzyme replacement therapy to treat CLN2 batten disease: optimization of drug administration routes. Cells. 2020;9(5). https://doi.org/10.3390/cells9051273.

  135. **a Y, Ling X, Hu G, Zhu Q, Zhang J, Li Q, et al. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Res Ther. 2020;11(1):313. https://doi.org/10.1186/s13287-020-01834-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  137. Nolte-’t Hoen ENM, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113(9):1977–81. https://doi.org/10.1182/blood-2008-08-174094.

    Article  CAS  PubMed  Google Scholar 

  138. Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017;142:1–12. https://doi.org/10.1016/j.biomaterials.2017.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Batrakova EV, Haney MJ, Zhao Y, Klyachko NL, Kabanov AV. Extracellular vesicles as drug delivery vehicles for lysosomal enzyme TPP1 to treat Batten disease. Mol Genet Metab. 2020;129(2):S27–8.

    Article  Google Scholar 

  140. György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–64. https://doi.org/10.1146/annurev-pharmtox-010814-124630.

    Article  CAS  PubMed  Google Scholar 

  141. Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020.

    Article  CAS  PubMed  Google Scholar 

  142. György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88. https://doi.org/10.1007/s00018-011-0689-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Basso M, Bonetto V. Extracellular vesicles and a novel form of communication in the brain. Front Neurosci. 2016;10:127. https://doi.org/10.3389/fnins.2016.00127.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. https://doi.org/10.3402/jev.v4.27066.

    Article  PubMed  Google Scholar 

  145. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol. 2016;7(1):113–70. https://doi.org/10.1002/cphy.c160006.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165260. https://doi.org/10.1016/j.bbadis.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  147. Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245–61. https://doi.org/10.1007/s00401-017-1667-0.

    Article  PubMed  PubMed Central  Google Scholar 

  148. McBride DW, Zhang JH. Precision Stroke animal models: the permanent MCAO model should be the primary model, not transient MCAO. Transl Stroke Res. 2017. https://doi.org/10.1007/s12975-017-0554-2.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008;16(4):782–90. https://doi.org/10.1038/mt.2008.1.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Development Fund of Macau (FDCT nos. 0093/2018/A3, 0106/2019/A2) and the National Natural Science Foundation of China (NSFC no. 82074051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zheng or Yonghua Zhao.

Ethics declarations

Ethical Approval

This article does not include any animal studies carried out by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, B., Chen, Y. et al. Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke. Transl. Stroke Res. 13, 171–187 (2022). https://doi.org/10.1007/s12975-021-00915-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00915-3

Keywords

Navigation