Log in

Effect of gamma radiation on growth and lignin content in Brachypodium distachyon

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Brachypodium distachyon has been highlighted as a model monocot plant with small genome and short life cycle. Biofuels are being developed as renewable energy sources to replace fossil fuels. Bioethanol production is negatively correlated with lignin content. Here, Brachypodium was acutely or chronically irradiated at doses of 50, 100, 150, 200, and 250 Gy. The effect of radiation on plant growth and generation of mutant populations was explored. The lethal effect of radiation was higher in acutely irradiated M0 populations. A dose-dependent negative effect in plant height, tiller number, floral spikelet, and total seed number was observed, with a positive effect in days to heading. The phenotype of 1,773 M1 plants was evaluated, with 417 plants being selected to construct the M2 population. The 31 M2 plants that showed the least staining with phloroglucinol were selected. These mutants could be useful materials for studies such as identification of nucleotide substitutions in genes involved in lignin biosynthesis pathway, monitoring of mutant physiological traits, and evaluation of fitness for bioethanol production. As biological resources, the M2 populations generated in this work will contribute to studies of functional genomics of Brachypodium and to the breeding of grass crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Casler MD, Pedersen JF, Undersander DJ. 2003. Forage yield and economic losses associated with the brownmidrib trait in sudangrass. Crop Sci. 43: 782–789

    Article  Google Scholar 

  • Chapple C, Ladisch M, Melian R. 2007. Loosening lignin’s grip on biofuel production. Nat. Biotechnol. 25: 746–747

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Dixon RA. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25: 759–761

    Article  PubMed  CAS  Google Scholar 

  • Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L. 2007. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226: 1117–1129

    Article  PubMed  CAS  Google Scholar 

  • Donini P, Sonnino A. 1998. Induced mutation in plant breeding: current status and future outlook. In SM Jain, DS Brar, BS Ahloowalia, eds, Somaclonal variation and induced mutation in crop improvement, Kluwer Academic Publishers, London, pp 255–291

    Chapter  Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ. 1990. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl. Acad. Sci. USA. 87: 9057–9061

    Article  PubMed  CAS  Google Scholar 

  • Fu HW, Li YF, Shu QY. 2008. A revisit of mutation induction by gamma rays in rice (Oryza sativa L.) implications of microsatellite markers for quality control. Mol. Breed. 22: 281–288

    Article  CAS  Google Scholar 

  • Garvin DF. 2007. Brachypodium: a new monocot model plant system emerges. J. Sci. Food Agric. 87: 1177–1179

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Guillon F, Bouchet B, Jamme F, Robert P, Quéméner B, Barron C, Larré C, Dumas P, Saulnier L. 2011. Brachypodium distachyon grain: characterization of endosperm cell walls. J. Exp. Bot. 62: 1001–1015

    Article  PubMed  CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang ZY. 2009. Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell. Dev. Biol. 45: 306–313

    CAS  Google Scholar 

  • José MFM, Manuel M, Jorge O, Rafael G. 1997. Sunflower mutant containing high levels of palmitic acid in high oleic background. Euphytica 97: 113–117

    Article  Google Scholar 

  • Keating JD, Panganiban C, Mansfield SD. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196–1206

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA. 2001. Evolutionary history of the grasses. Plant Physiol. 125: 1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C et al. 2007. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenoty** reveals effects on cell wall polymer metabolism and structure. Plant Cell 19: 3669–3691

    Article  PubMed  Google Scholar 

  • Li X, Weng JK, Chapple C. 2008. Improvement of biomass through lignin modification. Plant J. 54: 569–851

    Article  PubMed  CAS  Google Scholar 

  • Lorenz AJ, Anex RP, Isci A, Coors JG, de Leon N, Weimer PJ. 2009. Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover. Biotechnol. Biofuels. 2: 5

    Article  PubMed  Google Scholar 

  • Luckey TD. 1982. Hormesis with ionizing radiation. Nucl. Sci. Eng. 82: 365–366

    Google Scholar 

  • Martínez JMF, Mancha M, Osorio J, Garcés R. 1997. Sunflower mutant containing high levels of palmitic acid in high oleic background. Euphytica 97: 113–116

    Article  Google Scholar 

  • Matsukura C, Yamaguchi I, Inamura M, Ban Y, Kobayashi Y, Yin YG, Saito T, Kuwata C, Imanishi S, Nishimura S. 2007. Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom’. Plant Biotechnol. 24: 39–44

    Article  Google Scholar 

  • Mir Derikvand M, Sierra JB, Ruel K, Pollet B, Do CT, Thévenin J, BuVard D, Jouanin L, Lapierre C. 2008. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 227: 943–956

    Article  PubMed  CAS  Google Scholar 

  • Monties B. 1989. Lignins. In PP Dey, JB Harborne, eds, Methods in Plant Biochemistry, Academic Press, London, pp 113–157

    Google Scholar 

  • Opanowicz M, Hands P, Betts D, Parker ML, Toole GA, Mills ENC, Doonan JH, Drea S. 2011. Endosperm development in Brachypodium distachyon. J. Exp. Bot. 62: 735–748

    Article  PubMed  CAS  Google Scholar 

  • Pedersen JF, Vogel KP, Funnell DL. 2005. Impact of reduced lignin on plant fitness. Crop Sci. 45: 812–819

    Article  CAS  Google Scholar 

  • Pincon G, Maury S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. 2001. Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry 57: 1167–1176

    Article  PubMed  CAS  Google Scholar 

  • Pomar F, Merino F, Ros Barceló A. 2002. O-4-Linked coniferyl and sinapyal aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCL) reaction. Protoplasma 220: 17–28

    Article  PubMed  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484–489

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SS, Reddy MSS, Chen F, Dixon RA. 2006. Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J. Biol. Chem. 281: 8843–8853

    Article  PubMed  CAS  Google Scholar 

  • Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. 2005. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. USA. 102: 16573–16578

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C. 2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J. 60: 771–782

    Article  PubMed  CAS  Google Scholar 

  • Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA. 2007. Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68: 1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Shah SM, Sharif M. 1994. Studies on the effect of gamma radiation on some morphological characters of mungbean (Vigna radiata (L.) Wilczek) cultivars. Sci. Khyber. 7: 37–44

    Google Scholar 

  • Shapiro SS, Wilk MB. 1965. An analysis of variance of normality (complete samples). Biometrika 52: 591–611

    Google Scholar 

  • Sparrow AH, Woodwell GM. 1962. Prediction of the sensitivity of plants to chronic gamma irradiation. Radiat. Bot. 2: 9–26

    Article  Google Scholar 

  • Speer EO. 1987. A method of retaining phloroglucinol proof lignin. Stain Technol. 62: 279–280

    PubMed  CAS  Google Scholar 

  • Stadler LJ. 1928. Mutations in barley induced by X-rays and radium. Science 68: 186–187

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Shikazono N and Hase Y. 2010. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J. Radiat. Res. 51: 223–233

    Article  PubMed  CAS  Google Scholar 

  • Torney F, Moeller L, Scarpa A, Wang K. 2007. Genetic engineering approaches to improve bioethanol production from maize. Curr. Opin. Biotech. 18: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang F, Zhai H, Liu Q. 2007. Production of a useful mutant by chronic irradiation in sweet potato. Sci. Hortic. 111: 173–178

    Article  CAS  Google Scholar 

  • Watt M, Schneebeli K, Dong P, Wilson LW. 2009. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct. Plant Biol. 36: 960–969

    Article  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart NC. 2008. Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13: 421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Weon Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.B., Kim, D.Y., Jeon, W.B. et al. Effect of gamma radiation on growth and lignin content in Brachypodium distachyon . J. Crop Sci. Biotechnol. 16, 105–110 (2013). https://doi.org/10.1007/s12892-013-0022-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-013-0022-9

Key words

Navigation